题目内容
设Sn=+…+,写出S1,S2,S3,S4的值,归纳并猜想出结果,并给出证明.
Sn=
解析
(1)求证:当时,;(2)证明: 不可能是同一个等差数列中的三项.
设数列{an}:1,-2,-2,3,3,3,-4,-4,-4,-4,…,(-1)k-1k,…,(-1),即当(k∈N*)时,an=(-1)k-1k,记Sn=a1+a2+…+an(n∈N*),用数学归纳法证明Si(2i+1)=-i(2i+1)(i∈N*).
用数学归纳法证明不等式:>1(n∈N*且n>1).
若,且,求证:
已知数列{an}满足a1=λ,an+1=an+n-4,λ∈R,n∈N+,对任意λ∈R,证明:数列{an}不是等比数列.
某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.(1)sin213°+cos217°-sin 13°cos 17°.(2)sin215°+cos215°-sin 15°cos 15°.(3)sin218°+cos212°-sin 18°cos 12°.(4)sin2(-18°)+cos248°-sin(-18°)cos 48°.(5)sin2(-25°)+cos255°-sin(-25°)cos 55°.①试从上述五个式子中选择一个,求出这个常数.②根据①的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.
已知多项式f(n)=n5+n4+n3-n.(1)求f(-1)及f(2)的值;(2)试探求对一切整数n,f(n)是否一定是整数?并证明你的结论.
=( )