ÌâÄ¿ÄÚÈÝ

14£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{n}$=1£¨³£Êým¡¢n¡ÊR£¬ÇÒm£¾n£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬ÇÒM¡¢NΪ¶ÌÖáµÄÁ½¸ö¶Ëµã£¬ÇÒËıßÐÎF1MF2NÊÇÃæ»ýΪ4µÄÕý·½ÐΣ®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©¹ýÔ­µãÇÒбÂÊ·Ö±ðΪkºÍ-k£¨k¡Ý2£©µÄÁ½ÌõÖ±ÏßÓëÍÖÔ²$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{n}$=1µÄ½»µãΪA¡¢B¡¢C¡¢D£¨°´ÄæÊ±Õë˳ÐòÅÅÁУ¬ÇÒµãAλÓÚµÚÒ»ÏóÏÞÄÚ£©£¬ÇóËıßÐÎABCDµÄÃæ»ýSµÄ×î´óÖµ£®

·ÖÎö £¨1£©ÓÉËıßÐÎF1MF2NÊÇÃæ»ýΪ4µÄÕý·½ÐΣ¬c=b=$\sqrt{2}$£¬ÓÉ´ËÄܵõ½ËùÇóÍÖÔ²·½³Ì£®
£¨2£©ÉèA£¨x£¬y£©£®Çó³öAµÄ×ø±ê£®¸ù¾ÝÌâÉèÖ±ÏßͼÏóÓëÍÖÔ²µÄ¶Ô³ÆÐÔ£¬ÖªS=4¡Á$\frac{2}{\sqrt{1+2{k}^{2}}}$¡Á$\frac{2k}{\sqrt{1+2{k}^{2}}}$=$\frac{16k}{1+2{k}^{2}}$=$\frac{16}{\frac{1}{k}+2k}$£¨k¡Ý2£©£®ÓÉ´ËÄÜÇó³öËıßÐÎABCDµÄÃæ»ýSµÄ×î´óÖµ£®

½â´ð ½â£º£¨1£©ÒÀÌâÒ⣺ËıßÐÎF1MF2NÊÇÃæ»ýΪ4µÄÕý·½ÐΣ¬
¡àc=b=$\sqrt{2}$£¬
¡àa=2
¡àËùÇóÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$£®£¨3·Ö£©
£¨¢ò£©ÉèA£¨x£¬y£©£®
ÓÉ$\left\{\begin{array}{l}{y=kx}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\end{array}\right.$µÃA£¨$\frac{2}{\sqrt{1+2{k}^{2}}}$£¬$\frac{2k}{\sqrt{1+2{k}^{2}}}$£©£®£¨6·Ö£©
¸ù¾ÝÌâÉèÖ±ÏßͼÏóÓëÍÖÔ²µÄ¶Ô³ÆÐÔ£¬Öª£¨8·Ö£©
S=4¡Á$\frac{2}{\sqrt{1+2{k}^{2}}}$¡Á$\frac{2k}{\sqrt{1+2{k}^{2}}}$=$\frac{16k}{1+2{k}^{2}}$=$\frac{16}{\frac{1}{k}+2k}$£¨k¡Ý2£©£®£¨9·Ö£©
ÉèM£¨k£©=2k+$\frac{1}{k}$£¬Ôòµ±k¡Ý2ʱ£¬M¡ä£¨k£©=2-$\frac{1}{{k}^{2}}$£¾0
¡àM£¨k£©ÔÚk¡Ê[2£¬+¡Þ£©Ê±µ¥µ÷µÝÔö£¬¡àM£¨k£©¡Ý$\frac{9}{2}$£¬£¨11·Ö£©
¡àµ±k¡Ý2ʱ£¬Smax=$\frac{32}{9}$£®£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨺ÍËıßÐÎÃæ»ýµÄ×î´óÖµµÄÇ󷨣¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâºÏÀíµØ½øÐеȼÛת»¯£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø