题目内容

18.已知实数x,一满足$\left\{\begin{array}{l}{y≥\frac{x}{3}-2}\\{y≤2x+4}\\{2x+3y-12≤0}\end{array}\right.$,直线(2+λ)x-(3+λ)y+(1-2λ)=0(λ∈R)过定点A(x0,y0),则$\frac{y-{y}_{0}}{x-{x}_{0}}$的取值范围为(  )
A.[$\frac{1}{5}$,7]B.[$\frac{1}{7}$,5]C.(-∞,$\frac{1}{5}$]∪[7,+∞]D.(-∞,$\frac{1}{7}$]∪[5,+∞]

分析 由约束条件作出可行域,由直线系方程求出直线所过定点A,结合图形由两点求斜率得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{y≥\frac{x}{3}-2}\\{y≤2x+4}\\{2x+3y-12≤0}\end{array}\right.$作出可行域如图,

由(2+λ)x-(3+λ)y+(1-2λ)=0,得(2x-3y+1)+λ(x-y-2)=0,
联立$\left\{\begin{array}{l}{2x-3y+1=0}\\{x-y-2=0}\end{array}\right.$,解得A(7,5),
∴直线(2+λ)x-(3+λ)y+(1-2λ)=0(λ∈R)过定点A(7,5),
$\frac{y-{y}_{0}}{x-{x}_{0}}$即$\frac{y-5}{x-7}$的几何意义为可行域内的动点(x,y)与定点A(7,5)连线的斜率.
由图可知:${k}_{AB}=\frac{5-0}{7-6}=5$,${k}_{AC}=\frac{5-4}{7-0}=\frac{1}{7}$,
∴$\frac{y-{y}_{0}}{x-{x}_{0}}$的取值范围为[$\frac{1}{7},5$].
故选:B.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网