题目内容
14.设a≠0,n是大于1的自然数,${({1+\frac{x}{a}})^n}$的展开式为a0+a1x+a2x2+…+anxn.若a1=3,a2=4,则a=3.分析 利用二项式定理展开式,比较系数即可得出.
解答 解:${({1+\frac{x}{a}})^n}$=1+${∁}_{n}^{1}×\frac{x}{a}$+${∁}_{n}^{2}(\frac{x}{a})^{2}$+…=a0+a1x+a2x2+…+anxn.a1=3,a2=4,
∴${∁}_{n}^{1}×\frac{1}{a}$=3,${∁}_{n}^{2}(\frac{1}{a})^{2}$=4,a≠0.
解得a=3,n=9.
故答案为:3.
点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
19.数列{an}的首项a1=2,且(n+1)an=nan+1,则a3的值为( )
| A. | 5 | B. | 6 | C. | 7 | D. | 8 |
3.设函数f(x)=$\left\{\begin{array}{l}{ax+2,x≥2}\\{(\frac{1}{2})^{x}-1,x<2}\end{array}\right.$,对于任意的实数x1≠x2都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,则实数a的取值范围为( )
| A. | a<0 | B. | a≤0 | C. | a≤-$\frac{11}{8}$ | D. | a<-$\frac{11}{8}$ |