题目内容

15.由倍角公式cos2x=2cos2x-1,可知cos2x可以表示为仅含cosx的二次多项式.
(1)类比cos2x公式的推导方法,试用仅含有cosx的多项式表示cos3x;
(2)已知3×18°=90°-2×18°,试结合第(1)问的结论,求出sin18°的值.

分析 (1)利用二倍角公式转化求解即可.
(2)直接利用诱导公式以及三倍角公式化简求解即可.

解答 解:(1)cos2x═cos(2x+x)
=cos2xcosx-sin2xsinx
=(2cos2x-1)cosx-2sin2xcosx
=2cos3x-cosx-2(1-cos2x)cosx
=4cos3x-3cosx,
(2)因为cos(3×18°)=cos(90°-2×18°),
所以4cos318°-3cos18°=2sin18°cos18°,
所以4cos218°-3=2sin18°,
所以4sin218°+2sin18°-1=0,
解得sin18°=$\frac{\sqrt{5}-1}{4}$($\frac{-\sqrt{5}-1}{4}$舍去).

点评 本题考查二倍角公式的应用,三角函数的化简求值,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网