题目内容
15.由倍角公式cos2x=2cos2x-1,可知cos2x可以表示为仅含cosx的二次多项式.(1)类比cos2x公式的推导方法,试用仅含有cosx的多项式表示cos3x;
(2)已知3×18°=90°-2×18°,试结合第(1)问的结论,求出sin18°的值.
分析 (1)利用二倍角公式转化求解即可.
(2)直接利用诱导公式以及三倍角公式化简求解即可.
解答 解:(1)cos2x═cos(2x+x)
=cos2xcosx-sin2xsinx
=(2cos2x-1)cosx-2sin2xcosx
=2cos3x-cosx-2(1-cos2x)cosx
=4cos3x-3cosx,
(2)因为cos(3×18°)=cos(90°-2×18°),
所以4cos318°-3cos18°=2sin18°cos18°,
所以4cos218°-3=2sin18°,
所以4sin218°+2sin18°-1=0,
解得sin18°=$\frac{\sqrt{5}-1}{4}$($\frac{-\sqrt{5}-1}{4}$舍去).
点评 本题考查二倍角公式的应用,三角函数的化简求值,考查计算能力.
练习册系列答案
相关题目
9.下列推理是归纳推理的是( )
| A. | 由于f(x)=xcosx满足f(-x)=-f(x)对?x∈R成立,推断f(x)=xcosx为奇函数 | |
| B. | 由a1=1,an=3n-1,求出s1,s2,s3,猜出数列{an}的前n项和的表达式 | |
| C. | 由圆x2+y2=1的面积S=πr2,推断:椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的面积S=πab | |
| D. | 由平面三角形的性质推测空间四面体的性质 |
10.下列不等关系式正确的是( )
| A. | ${1.5^{\frac{5}{4}}}$>${1.7^{\frac{5}{4}}}$ | B. | ${(\frac{4}{3})^{\frac{3}{4}}}$>${(\frac{4}{3})^{\frac{4}{3}}}$ | C. | ${(\sqrt{2})^{-\frac{1}{2}}}$>${(\sqrt{3})^{-\frac{1}{2}}}$ | D. | ${(0.7)^{\frac{3}{2}}}$>${(0.7)^{\frac{1}{2}}}$ |
7.已知三棱锥O-ABC的顶点A,B,C都在半径为3的球面上,O是球心,∠AOB=150°,则三棱锥O-ABC体积的最大值为( )
| A. | $\frac{{9\sqrt{3}}}{4}$ | B. | $\frac{{9\sqrt{3}}}{2}$ | C. | $\frac{9}{2}$ | D. | $\frac{9}{4}$ |