题目内容

4.求下列函数的导数:
(1)y=xarcsinx;
(2)y=xe${\;}^{{x}^{2}}$;
(3)y=$\frac{1}{1+\sqrt{x}}$;
(4)y=arctan$\frac{1}{x}$+xln$\sqrt{x}$.

分析 根据复合函数的导数公式进行求解即可.

解答 解:(1)y′=arcsinx+x•$\frac{1}{\sqrt{1-{x}^{2}}}$;
(2)y′=e${\;}^{{x}^{2}}$+xe${\;}^{{x}^{2}}$•2x=e${\;}^{{x}^{2}}$•(1+2x2);
(3)y′=-$\frac{1}{(1+\sqrt{x})^{2}}$•$\frac{1}{2}•$$\frac{1}{\sqrt{x}}$=$\frac{1}{2\sqrt{x}(1+\sqrt{x})^{2}}$;
(4)y=arctan$\frac{1}{x}$+xln$\sqrt{x}$=y=arctan$\frac{1}{x}$+$\frac{1}{2}$xlnx.
y′=$\frac{1}{1+(\frac{1}{x})^{2}}$•(-$\frac{1}{{x}^{2}}$)+$\frac{1}{2}$lnx+$\frac{1}{2}$x$•\frac{1}{x}$=-$\frac{1}{{x}^{2}+1}$+$\frac{1}{2}$

点评 本题主要考查导数的计算,根据常见函数的导数公式以及复合函数的导数公式是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网