题目内容


已知a,b,c∈R,函数f(x)=ax2+bx+c.若f(0)=f(4)>f(1),则(  )

(A)a>0,4a+b=0   (B)a<0,4a+b=0

(C)a>0,2a+b=0   (D)a<0,2a+b=0


A解析:由f(0)=f(4)>f(1),可得函数图象开口向上,即a>0,且对称轴-=2,所以4a+b=0,故选A.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网