题目内容
【题目】已知圆
的方程为:
.
(1)直线
过点
,且与圆
交于
两点,若
,求直线
的方程;
(2)圆
上有一动点
,
,若向量
,求动点
的轨迹方程,并说明此轨迹是什么曲线.
【答案】(1)
或
;(2)
,轨迹是一个焦点在
轴上的椭圆
【解析】
(1)当直线
垂直于
轴时,可验证其满足题意,得到直线方程为
;当直线
不垂直于
轴时,设直线为
,利用垂径定理可求得圆心到直线距离
,利用点到直线距离公式构造方程求得
,从而得到直线方程;(2)设
,利用向量坐标运算可得到
,
,根据
在圆
上,可代入整理得到
点轨迹.
(1)当直线
垂直于
轴时,此时直线方程为![]()
与圆的两个交点坐标为
和
,这两点的距离为
,满足题意;
当直线
不垂直于
轴时,设其方程为:
,即:![]()
设圆心到此直线的距离为
,则:
,解得:![]()
,解得:![]()
此时直线方程为:![]()
综上所述,所求直线方程为:
或![]()
(2)设
点的坐标为![]()
∵
,
,![]()
∴
,![]()
∵
∴
,即![]()
∴
点的轨迹方程是
,轨迹是一个焦点在
轴上的椭圆
练习册系列答案
相关题目
【题目】为调查乘客的候车情况,公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间(单位:分钟)作为样本分成5组,如表所示:
组别 | 候车时间 | 人数 |
一 |
| 2 |
二 |
| 6 |
三 |
| 4 |
四 |
| 2 |
五 |
| 1 |
(1)估计这60名乘客中候车时间少于10分钟的人数;
(2)若从上表第三、四组的6人中随机抽取2人作进一步的问卷调查,求抽到的两人恰好来自同一组的概率.