题目内容

a
b
是两个不共线的非零向量,且|
a
|=|
b
|=1且
a
b
夹角为120°

(1)记
OA
=
a
OB
=t
b
OC
=
1
3
(
a
+
b
)
,当实数t为何值时,∠ACB为钝角?
(2)令f(x)=|
a
-
b
sinx|,x∈[0,2π]
,求f(x)的值域及单调递减区间.
分析:(1)由|
a
|=|
b
|=1且
a
b
夹角为120°
.可得
a
b
=|
a
| |
b
|cos120°
=-
1
2
.利用向量的运算法则可得
CA
=
OA
-
OC
=
2
3
a
-
1
3
b
CB
=
OB
-
OC
=-
1
3
a
+(t-
1
3
)
b
.由
CA
CB
=(
2
3
a
-
1
3
b
)•[-
1
3
a
+(t-
1
3
)
b
]
<0,解得t>-
1
12
.又
CA
CB
时,解得t=
1
2
.即可得到t的取值范围.
(2)利用数量积性质可得:f(x)=|
a
-
b
sinx|
=
a
2
+
b
2
sin2x-2
a
b
sinx
=
(sinx+
1
2
)2+
3
4
,利用sinx和二次函数及其幂函数的单调性即可得出.
解答:解:(1)∵|
a
|=|
b
|=1且
a
b
夹角为120°
.∴
a
b
=|
a
| |
b
|cos120°
=-
1
2

CA
=
OA
-
OC
=
a
-
1
3
(
a
+
b
)
=
2
3
a
-
1
3
b
CB
=
OB
-
OC
=t
b
-
1
3
(
a
+
b
)
=-
1
3
a
+(t-
1
3
)
b

CA
CB
=(
2
3
a
-
1
3
b
)•[-
1
3
a
+(t-
1
3
)
b
]
=-
2
9
a
+
2
3
(t-
1
3
)
a
b
+
1
9
a
b
-
1
3
(t-
1
3
)
b
2

=-
2
9
+
2
3
(t-
1
3
)×(-
1
2
)
+
1
9
×(-
1
2
)-
1
3
(t-
1
3
)×1
<0,
化为12t>-1,
解得t>-
1
12

CA
CB
时,解得t=
1
2

∴t的取值范围是(-
1
12
1
2
)∪(
1
2
,+∞)

(2)f(x)=|
a
-
b
sinx|
=
a
2
+
b
2
sin2x-2
a
b
sinx
=
sin2x+sinx+1
=
(sinx+
1
2
)2+
3
4

∵x∈[0,2π],∴sinx∈[-1,1].
当sinx=-
1
2
时,f(x)min=f(-
1
2
)=
3
2
;当sinx=1时,f(x)max=
3

f(x)∈[
3
2
3
]

x∈[
π
2
6
]
时,sinx∈[-
1
2
,1]
,且f(x)在x∈[
π
2
6
]
上单调递减;
x∈[
2
11π
6
]
时,sinx∈[-1,-
1
2
]
,且f(x)在x∈[
2
11π
6
]
上单调递减.
综上可得:f(x)单调递减是[
π
2
6
]
[
2
11π
6
]
点评:本题考查了向量的运算法则、数量积运算、夹角公式、正弦函数的单调性、二次函数及其幂函数的单调性等基础知识与基本技能方法,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网