题目内容
| a |
| b |
| a |
| b |
| a |
| b |
(1)记
| OA |
| a |
| OB |
| b |
| OC |
| 1 |
| 3 |
| a |
| b |
(2)令f(x)=|
| a |
| b |
分析:(1)由|
|=|
|=1且
与
夹角为120°.可得
•
=|
| |
|cos120°=-
.利用向量的运算法则可得
=
-
=
-
,
=
-
=-
+(t-
)
.由
•
=(
-
)•[-
+(t-
)
]<0,解得t>-
.又
∥
时,解得t=
.即可得到t的取值范围.
(2)利用数量积性质可得:f(x)=|
-
sinx|=
=
,利用sinx和二次函数及其幂函数的单调性即可得出.
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| 1 |
| 2 |
| CA |
| OA |
| OC |
| 2 |
| 3 |
| a |
| 1 |
| 3 |
| b |
| CB |
| OB |
| OC |
| 1 |
| 3 |
| a |
| 1 |
| 3 |
| b |
| CA |
| CB |
| 2 |
| 3 |
| a |
| 1 |
| 3 |
| b |
| 1 |
| 3 |
| a |
| 1 |
| 3 |
| b |
| 1 |
| 12 |
| CA |
| CB |
| 1 |
| 2 |
(2)利用数量积性质可得:f(x)=|
| a |
| b |
|
(sinx+
|
解答:解:(1)∵|
|=|
|=1且
与
夹角为120°.∴
•
=|
| |
|cos120°=-
.
=
-
=
-
(
+
)=
-
,
=
-
=t
-
(
+
)=-
+(t-
)
.
由
•
=(
-
)•[-
+(t-
)
]=-
+
(t-
)
•
+
•
-
(t-
)
2
=-
+
(t-
)×(-
)+
×(-
)-
(t-
)×1<0,
化为12t>-1,
解得t>-
,
又
∥
时,解得t=
.
∴t的取值范围是(-
,
)∪(
,+∞).
(2)f(x)=|
-
sinx|=
=
=
,
∵x∈[0,2π],∴sinx∈[-1,1].
当sinx=-
时,f(x)min=f(-
)=
;当sinx=1时,f(x)max=
.
∴f(x)∈[
,
].
当x∈[
,
]时,sinx∈[-
,1],且f(x)在x∈[
,
]上单调递减;
当x∈[
,
]时,sinx∈[-1,-
],且f(x)在x∈[
,
]上单调递减.
综上可得:f(x)单调递减是[
,
]∪[
,
].
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| 1 |
| 2 |
| CA |
| OA |
| OC |
| a |
| 1 |
| 3 |
| a |
| b |
| 2 |
| 3 |
| a |
| 1 |
| 3 |
| b |
| CB |
| OB |
| OC |
| b |
| 1 |
| 3 |
| a |
| b |
| 1 |
| 3 |
| a |
| 1 |
| 3 |
| b |
由
| CA |
| CB |
| 2 |
| 3 |
| a |
| 1 |
| 3 |
| b |
| 1 |
| 3 |
| a |
| 1 |
| 3 |
| b |
| 2 |
| 9 |
| a |
| 2 |
| 3 |
| 1 |
| 3 |
| a |
| b |
| 1 |
| 9 |
| a |
| b |
| 1 |
| 3 |
| 1 |
| 3 |
| b |
=-
| 2 |
| 9 |
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 9 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
化为12t>-1,
解得t>-
| 1 |
| 12 |
又
| CA |
| CB |
| 1 |
| 2 |
∴t的取值范围是(-
| 1 |
| 12 |
| 1 |
| 2 |
| 1 |
| 2 |
(2)f(x)=|
| a |
| b |
|
| sin2x+sinx+1 |
(sinx+
|
∵x∈[0,2π],∴sinx∈[-1,1].
当sinx=-
| 1 |
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| 3 |
∴f(x)∈[
| ||
| 2 |
| 3 |
当x∈[
| π |
| 2 |
| 7π |
| 6 |
| 1 |
| 2 |
| π |
| 2 |
| 7π |
| 6 |
当x∈[
| 3π |
| 2 |
| 11π |
| 6 |
| 1 |
| 2 |
| 3π |
| 2 |
| 11π |
| 6 |
综上可得:f(x)单调递减是[
| π |
| 2 |
| 7π |
| 6 |
| 3π |
| 2 |
| 11π |
| 6 |
点评:本题考查了向量的运算法则、数量积运算、夹角公式、正弦函数的单调性、二次函数及其幂函数的单调性等基础知识与基本技能方法,属于难题.
练习册系列答案
相关题目