题目内容
在数列{an}中,a1=2,an+1=
an,则an=
| n+1 | n |
2n
2n
.分析:累乘法:由an+1=
an,得
=
,则an=a1×
×
×…×
,代入即可求得,注意验证n=1的情形.
| n+1 |
| n |
| an+1 |
| an |
| n+1 |
| n |
| a2 |
| a1 |
| a3 |
| a2 |
| an |
| an-1 |
解答:解:由an+1=
an,得
=
,
所以n≥2时,an=a1×
×
×…×
=2×
×
×…×
=2n,
又n=1时,a1=2适合上式,
所以an=2n,
故答案为:2n.
| n+1 |
| n |
| an+1 |
| an |
| n+1 |
| n |
所以n≥2时,an=a1×
| a2 |
| a1 |
| a3 |
| a2 |
| an |
| an-1 |
| 2 |
| 1 |
| 3 |
| 2 |
| n |
| n-1 |
又n=1时,a1=2适合上式,
所以an=2n,
故答案为:2n.
点评:本题考查数列递推式求数列通项,若数列{an}满足
=f(n),则可考虑累乘法求其通项.
| an+1 |
| an |
练习册系列答案
相关题目