题目内容
数列a0,a1,a2,…满足:a0=| 3 |
| 1 |
| {an} |
分析:分别求出a1,a2,a3,a4,a5,a6然后观察规律找出通项代入求解.
解答:解:∵a0=
∴[a0]=1,{a0}=
-1
∴a1=[a0] +
=1+
=2+
∴a2=[a1]+
= 4+(
-1)
∴a3=[a2]+
=5+
∴a4=[a3]+
=7+ (
-1)
∴a5=[a4]+
= 8+
∴a6=[a5]+
=10+
…
∴a2n+1=2+3n+
a2n+2=4+3n+(
-1)
∴a2008= a2×1003+2=4+3×1003+(
-1)=3012+
故答案为3012+
| 3 |
∴[a0]=1,{a0}=
| 3 |
∴a1=[a0] +
| 1 |
| {a0} |
| 1 | ||
|
| ||
| 2 |
∴a2=[a1]+
| 1 |
| {a1} |
| 3 |
∴a3=[a2]+
| 1 |
| {a2} |
| ||
| 2 |
∴a4=[a3]+
| 1 |
| {a3} |
| 3 |
∴a5=[a4]+
| 1 |
| {a4} |
| ||
| 2 |
∴a6=[a5]+
| 1 |
| {a5} |
| ||
| 2 |
…
∴a2n+1=2+3n+
| ||
| 2 |
a2n+2=4+3n+(
| 3 |
∴a2008= a2×1003+2=4+3×1003+(
| 3 |
| 3 |
故答案为3012+
| 3 |
点评:本题主要考查了利用数列的地推公式求数列的项.解题的关键是要根据[an]与{an}分别表示an的整数部分和小数部分求出a1,a2,a3,a4,a5,a6然后分析观察出通项公式后代入求解.
练习册系列答案
相关题目