题目内容
在锐角△ABC中,a、b、c分别为∠A、∠B、∠C所对的边,且
a=2csinA.
(1)确定∠C的大小;
(2)若c=
,求△ABC周长的取值范围.
| 3 |
(1)确定∠C的大小;
(2)若c=
| 3 |
(1)由
a=2csinA变形得:
=
,
又正弦定理得:
=
,
∴
=
,
∵sinA≠0,∴sinC=
,
∵△ABC是锐角三角形,
∴∠C=
;
(2)∵c=
,sinC=
,
∴由正弦定理得:
=
=
=
=2,
即a=2sinA,b=2sinB,又A+B=π-C=
,即B=
-A,
∴a+b+c=2(sinA+sinB)+
=2[sinA+sin(
-A)]+
=2(sinA+sin
cosA-cos
sinA)+
=3sinA+
cosA+
=2
(sinAcos
+cosAsin
)+
=2
sin(A+
)+
,
∵△ABC是锐角三角形,
∴
<∠A<
,
∴
<sin(A+
)≤1,
则△ABC周长的取值范围是(3+
,3
].
| 3 |
| a |
| c |
| 2sinA | ||
|
又正弦定理得:
| a |
| c |
| sinA |
| sinC |
∴
| 2sinA | ||
|
| sinA |
| sinC |
∵sinA≠0,∴sinC=
| ||
| 2 |
∵△ABC是锐角三角形,
∴∠C=
| π |
| 3 |
(2)∵c=
| 3 |
| ||
| 2 |
∴由正弦定理得:
| a |
| sinA |
| b |
| sinB |
| c |
| sinC |
| ||||
|
即a=2sinA,b=2sinB,又A+B=π-C=
| 2π |
| 3 |
| 2π |
| 3 |
∴a+b+c=2(sinA+sinB)+
| 3 |
=2[sinA+sin(
| 2π |
| 3 |
| 3 |
=2(sinA+sin
| 2π |
| 3 |
| 2π |
| 3 |
| 3 |
=3sinA+
| 3 |
| 3 |
=2
| 3 |
| π |
| 6 |
| π |
| 6 |
| 3 |
=2
| 3 |
| π |
| 6 |
| 3 |
∵△ABC是锐角三角形,
∴
| π |
| 6 |
| π |
| 2 |
∴
| ||
| 2 |
| π |
| 6 |
则△ABC周长的取值范围是(3+
| 3 |
| 3 |
练习册系列答案
相关题目