题目内容
【题目】光线从
点射出,到
轴上的
点后,被
轴反射到
轴上的
点,又被
轴反射,这时反射线恰好过点
.
(1)求
所在直线的方程;
(2)过点
且斜率为
的直线
与
,
轴分别交于
、
,过
、
作直线
的垂线,垂足为
、
,求线段
长度的最小值.
【答案】(1)
;(2)
.
【解析】
(1)根据光线的反射原理,点
关于
轴对称点
以及点
关于
轴对称点
均在在直线
上,即可求解;
(2)先求出直线
的点斜式方程,进而得到
坐标,根据已知可得
,
为两平行线
的距离,求出直线
方程,得到两平行线的距离,利用基本不等式即可求解.
(1)点
关于
轴对称为
,
点
关于
轴对称点为
,
直线
经过
,
两点,
故直线
,
即
为所求的直线方程.
(2)设
的方程为
,
令
,令
即
,
.
从而可得直线
和
的方程分别为
和
,
又
,
为两平行线
的距离,
,∴
.
当且仅当
等号成立.
练习册系列答案
相关题目
【题目】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月
,
两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中
,
两种支付方式都不使用的有5人,样本中仅使用
和仅使用
的学生的支付金额分布情况如下:
交付金额(元) 支付方式 |
|
| 大于2000 |
仅使用 | 18人 | 9人 | 3人 |
仅使用 | 10人 | 14人 | 1人 |
(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月
,
两种支付方式都使用的概率;
(Ⅱ)从样本仅使用
和仅使用
的学生中各随机抽取1人,以
表示这2人中上个月支付金额大于1000元的人数,求
的分布列和数学期望;