题目内容
若函数f(x)=(x+a)3 x-2+a 2-(x-a)38-x-3a为偶函数,则所有实数a的取值构成的集合为______.
∵函数f(x)=(x+a)3a-2+a2-(x-a)38-x-3a为R上的偶函数
∴f(a)=f(-a)
即2a×3a-2+a2=-(-2a)×38-(-a)-3a
即a-2+a2=8-2a
即a2+3a-10=0
即(a-2)(a+5)=0
∴a=-5或a=2
故答案为{-5,2}
∴f(a)=f(-a)
即2a×3a-2+a2=-(-2a)×38-(-a)-3a
即a-2+a2=8-2a
即a2+3a-10=0
即(a-2)(a+5)=0
∴a=-5或a=2
故答案为{-5,2}
练习册系列答案
相关题目
若函数 f(x)=a x (a>0,a≠1 ) 的部分对应值如表:
| x | -2 | 0 |
| f(x) | 0.592 | 1 |
则不等 式f-1(│x│<0)的解集是 ()
A. {x│-1<x<1} B. {x│x<-1或x>1}
C. {x│0<x<1} D. {x│-1<x<0或0<x<1}