题目内容
设f(x)=asin(πx+α)+bcos(πx+β)+4,其中a、b、α、β均为非零实数,若f(1988)=3,则f(2013)的值为( )
|
| A. | 1 | B. | 5 | C. | 3 | D. | 不确定 |
B解:∵f(1988)=3,∴asin(1988π+α)+bcos(1988π+β)+4=3,得asinα+bcosβ=﹣1.
∴f(2013)=asin(2013π+α)+bcos(2013π+β)+4=﹣(asinα+bcosβ)+4=﹣(﹣1)+4=5.故选B.
练习册系列答案
相关题目
设A,B,C是△ABC三个内角,且tanA,tanB是方程3x2﹣5x+1=0的两个实根,那么△ABC是( )
|
| A. | 钝角三角形 | B. | 锐角三角形 | C. | 等腰直角三角形 | D. | 以上均有可能 |