题目内容
(2013•许昌二模)已知函数f(x)=x(lnx+1)(x>0).
(Ⅰ)设F(x)=ax2+f'(x)(a∈R),讨论函数F(x)的单调性;
(Ⅱ)若斜率为k的直线与曲线y=f'(x)交于A(x1,y1)、B(x2,y2)(x1<x2)两点,求证:x1<
<x2.
(Ⅰ)设F(x)=ax2+f'(x)(a∈R),讨论函数F(x)的单调性;
(Ⅱ)若斜率为k的直线与曲线y=f'(x)交于A(x1,y1)、B(x2,y2)(x1<x2)两点,求证:x1<
| 1 | k |
分析:(Ⅰ)求出函数f(x)的导函数,代入函数F(x)=ax2+f'(x)(a∈R),进一步求出函数F(x)的导函数,然后分a≥0和a<0分析导函数在不同区间内的符号,从而得到函数F(x)的单调性;
(Ⅱ)由两点式求出k=
=
,利用分析法得到证x1<
<x2,转化为证1<
<
,换元后构造函数,利用导函数得到单调性,从而得到要证的结论.
(Ⅱ)由两点式求出k=
| f′(x2)-f′(x1) |
| x2-x1 |
| lnx2-lnx1 |
| x2-x1 |
| x2-x1 |
| lnx2-lnx1 |
| ||
ln
|
| x2 |
| x1 |
解答:解:(Ⅰ)由f(x)=x(lnx+1)(x>0),得f′(x)=lnx+2(x>0),
F(x)=ax2+lnx+2(x>0),∴F′(x)=2ax+
=
(x>0).
①当a≥0时,恒有F′(x)>0,故F(x)在(0,+∞)上是增函数;
②当a<0时,
令F′(x)>0,得2ax2+1>0,解得0<x<
;
令F′(x)<0,得2ax2+1<0,解得x>
;
综上,当a≥0时,F(x)在(0,+∞)上是增函数;
当a<0时,F(x)在(0,
)上单调递增,在(
,+∞)上单调递减;
(Ⅱ)k=
=
.
要证x1<
<x2,即证x1<
<x2,
等价于证1<
<
,令t=
,
则只要证1<
<t,由t>1,知lnt>0,故等价于lnt<t-1<tlnt(t>0)(*)
①设g(t)=t-1-lnt(t≥1),则g′(t)=1-
≥0(t≥1),
故g(t)在[1,+∞)上是增函数,
∴当t>1时,g(t)=t-1-lnt>g(1)=0,即t-1>lnt(t-1)
②设h(t)=tlnt-(t-1)(t≥1),则h′(t)=lnt≥0(t≥1),
故h(t)在[1,+∞)上是增函数.
∴当t>1时,h(t)=tlnt-(t-1)>h(1)=0,即t-1(t>1).
由①②知(*)成立,故x1<
<x2.
F(x)=ax2+lnx+2(x>0),∴F′(x)=2ax+
| 1 |
| x |
| 2ax2+1 |
| x |
①当a≥0时,恒有F′(x)>0,故F(x)在(0,+∞)上是增函数;
②当a<0时,
令F′(x)>0,得2ax2+1>0,解得0<x<
-
|
令F′(x)<0,得2ax2+1<0,解得x>
-
|
综上,当a≥0时,F(x)在(0,+∞)上是增函数;
当a<0时,F(x)在(0,
-
|
-
|
(Ⅱ)k=
| f′(x2)-f′(x1) |
| x2-x1 |
| lnx2-lnx1 |
| x2-x1 |
要证x1<
| 1 |
| k |
| x2-x1 |
| lnx2-lnx1 |
等价于证1<
| ||
ln
|
| x2 |
| x1 |
| x2 |
| x1 |
则只要证1<
| t-1 |
| lnt |
①设g(t)=t-1-lnt(t≥1),则g′(t)=1-
| 1 |
| t |
故g(t)在[1,+∞)上是增函数,
∴当t>1时,g(t)=t-1-lnt>g(1)=0,即t-1>lnt(t-1)
②设h(t)=tlnt-(t-1)(t≥1),则h′(t)=lnt≥0(t≥1),
故h(t)在[1,+∞)上是增函数.
∴当t>1时,h(t)=tlnt-(t-1)>h(1)=0,即t-1(t>1).
由①②知(*)成立,故x1<
| 1 |
| k |
点评:本题考查了利用导数研究函数的单调性,考查了不等式的证明,考查了分类讨论的数学思想方法和数学转化思想方法,训练了函数构造法,解答的关键在于正确分类,是有一定难度题目.
练习册系列答案
相关题目