题目内容
9.已知函数f(x)=|x+a|+|x-2|(1)当a=-3时,求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[0,2],求a的取值范围.
分析 (1)当a=-3时,利用绝对值的意义求得不等式f(x)≥3的解集.
(2)题目等价于f(x)≤|x-4|在[0,2]上恒成立,即|x+a|≤2在[0,2]上恒成立,即-2-x≤a≤2-x在[0,2]上恒成立,由此可得a的范围.
解答 解:(1)当a=-3时,求不等式f(x)≥3,即|x-3|+|x-2|≥3,
|x+a|+|x-2|表示数轴上的x对应点到2、3对应点的距离之和,
而1和4对应点到2、3对应点的距离之和正好等于3,故|x-3|+|x-2|≥3的解集为{x|x≤1,或x≥4}.
(2)若f(x)≤|x-4|的解集包含[0,2],等价于f(x)≤|x-4|在[0,2]上恒成立,
即|x+a|≤4-x-|x-2|在[0,2]上恒成立,即|x+a|+2-x≤4-x在[0,2]上恒成立.
即|x+a|≤2在[0,2]上恒成立,即-2≤x+a≤2在[0,2]上恒成立,
即-2-x≤a≤2-x在[0,2]上恒成立,∴-2≤a≤0.
点评 本题主要考查绝对值的意义,绝对值不等式的解法,函数的恒成立问题,属于中档题.
练习册系列答案
相关题目
19.已知tanθ=2,则sinθcosθ=( )
| A. | $\frac{3}{5}$ | B. | $\frac{2}{5}$ | C. | ±$\frac{2}{5}$ | D. | ±$\frac{3}{5}$ |
20.下列函数中,是偶函数且在(0,+∞)上为减函数的是( )
| A. | y=x2 | B. | y=x3 | C. | y=x-2 | D. | y=x-3 |
4.已知$f({\frac{a+2b}{3}})=\frac{f(a)+2f(b)}{3}$,f(1)=1,f(4)=7,则f(2016)=( )
| A. | 4028 | B. | 4029 | C. | 4030 | D. | 4031 |