题目内容

18.在△ABC中,D为线段BC上一点(不能与端点重合),∠ACB=$\frac{π}{3},AB=\sqrt{7}$,AC=3,BD=1,则AD=$\sqrt{7}$.

分析 由已知利用余弦定理可求BC的值,进而可求DC的值,再次利用余弦定理即可求得AD的值.

解答 解:在△ABC中,∵∠ACB=$\frac{π}{3},AB=\sqrt{7}$,AC=3,
∴由余弦定理AB2=AC2+BC2-2AC•BC•sin∠ACB,可得:7=9+BC2-2×3×BC×$\frac{1}{2}$,整理可得:BC2-3BC+2=0,
∴解得:BC=2或1,
∵D为线段BC上一点(不能与端点重合),可知,BC≠1,
∴BC=2,CD=BC-BD=2-1=1,
∴由余弦定理可得:AD=$\sqrt{A{C}^{2}+C{D}^{2}-2AC•CD•cos∠ACB}$=$\sqrt{9+1-2×3×1×\frac{1}{2}}$=$\sqrt{7}$.
故答案为:$\sqrt{7}$.

点评 本题主要考查了余弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网