题目内容
5.在平面上有A、B、C三点,满足|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|=1,|$\overrightarrow{BC}$|=$\sqrt{3}$,则$\overrightarrow{AB}$•$\overrightarrow{BC}$+$\overrightarrow{BC}$•$\overrightarrow{CA}$+$\overrightarrow{CA}$•$\overrightarrow{AB}$的值为( )| A. | 4 | B. | -4 | C. | -$\frac{5}{2}$ | D. | $\frac{7}{2}$ |
分析 由余弦定理求出A,继而求出B,C,利用数量积公式化简所求即可.
解答 解:|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|=1,|$\overrightarrow{BC}$|=$\sqrt{3}$,
由余弦定理可得BC2=AC2+AB2-2AB•AC•cosA,
∴3=1+1-2×1×1×cosA,
∴cosA=-$\frac{1}{2}$,
∴A=120°,
∴B=C=30°,
∴$\overrightarrow{AB}$•$\overrightarrow{BC}$+$\overrightarrow{BC}$•$\overrightarrow{CA}$+$\overrightarrow{CA}$•$\overrightarrow{AB}$=|$\overrightarrow{AB}$|•|$\overrightarrow{BC}$|cos150°+|$\overrightarrow{BC}$|•|$\overrightarrow{CA}$|cos150°+|$\overrightarrow{CA}$|•|$\overrightarrow{AB}$|cos60°=1×$\sqrt{3}$×(-$\frac{\sqrt{3}}{2}$)+$\sqrt{3}$×1×(-$\frac{\sqrt{3}}{2}$)+1×1×$\frac{1}{2}$=-$\frac{5}{2}$,
故选:C.
点评 本题考查了三角形三边对于向量的数量积计算;关键是熟练数量积公式;特别注意:向量的夹角与三角形内角的关系.
练习册系列答案
相关题目
15.sin1680°+tan2010°的值为( )
| A. | $\frac{1}{6}$ | B. | $\frac{\sqrt{3}}{6}$ | C. | -$\frac{1}{6}$ | D. | -$\frac{\sqrt{3}}{6}$ |
16.某市对在职的91名高中数学教师就支持新的数学教材还是支持旧的数学教材做了调查,结果如下表所示:
附表:
给出相关公式及数据:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
(12×23-22×34)2=222784,34×57×46×45=4011660.
参照附表,下列结论中正确的是( )
| 支持新教材 | 支持旧教材 | 合计 | |
| 教龄在10年以上的教师 | 12 | 34 | 46 |
| 教龄在10年以下的教师 | 22 | 23 | 45 |
| 合计 | 34 | 57 | 91 |
| P(K2≥k0) | 0.050 | 0.010 | 0.001 |
| k0 | 3.841 | 6.635 | 10.828 |
(12×23-22×34)2=222784,34×57×46×45=4011660.
参照附表,下列结论中正确的是( )
| A. | 在犯错误的概率不超过0.001的前提下,认为“教龄的长短与支持新教材有关” | |
| B. | 在犯错误的概率不超过0.05的前提下,认为“教龄的长短与支持新教材有关” | |
| C. | 在犯错误的概率不超过0.010的前提下,认为“教龄的长短与支持新教材有关” | |
| D. | 我们没有理由认为“教龄的长短与支持新教材有关” |
13.已知不等式组$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤1}\\{x+2y≥1}\end{array}\right.$表示的平面区域为D,若D内存在一点P(x0,y0),使ax0+y0<1,则a的取值范围为( )
| A. | (-∞,2) | B. | (-∞,1) | C. | (2,+∞) | D. | (1,+∞) |