题目内容
11.设函数f(x)=loga|x+b|在定义域内具有奇偶性,f(b-2)与f(a+1)的大小关系是( )| A. | f(b-2)=f(a+1) | B. | f(b-2)>f(a+1) | C. | f(b-2)<f(a+1) | D. | 不能确定 |
分析 由奇偶函数性质知函数f(x)定义域关于原点对称,可求得b值,进而可判断f(x)的奇偶性,分a>1,0<a<1两种情况讨论,借助函数的单调性可作出大小比较.
解答 解:∵f(x)在定义域内具有奇偶性,
∴函数f(x)的定义域关于原点对称,
∴b=0,则f(x)=loga|x|为偶函数,
∴f(b-2)=f(-2)=f(2)=loga2,
若a>1,则y=logax递增,且2<a+1,
∴loga2<loga(a+1),即f(b-2)<f(a+1);
若0<a<1,则y=logax递减,且2>a+1,
∴loga2<loga(a+1),即f(b-2)<f(a+1);
综上,f(b-2)<f(a+1),
故选:C.
点评 本题考查函数的奇偶性、单调性及其应用,属中档题,解决本题的关键是根据函数f(x)的奇偶性求得b值.
练习册系列答案
相关题目
2.设f(x)为定义在R上的奇函数,当x≥0时,有f(x)=$\left\{\begin{array}{l}{log_{\frac{1}{2}}}(x+1),\;x∈[0,1)\\ 1-|x-3|,\;x∈[1,+∞).\end{array}$,则关于x的函数F(x)=f(x)-$\frac{1}{2}$的所有零点之和为( )
| A. | $\sqrt{2}$-1 | B. | $\frac{{\sqrt{2}}}{2}$-1 | C. | 1-$\frac{{\sqrt{2}}}{2}$ | D. | 1-$\sqrt{2}$ |
19.点P是曲线y=x2-1nx上任意一点,则点P到直线y=x-2的距离的最小值是( )
| A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | 2$\sqrt{2}$ |
6.将函数f(x)=$sin(2x-\frac{π}{4})$向右平移$\frac{3π}{8}$个单位,再将所得的函数图象上的各点纵坐标不变,横坐标变为原来的2倍,得到函数y=g(x)的图象,则函数y=g(x)与x=-$\frac{π}{2}$,x=$\frac{π}{3}$,x轴围成的图形面积为( )
| A. | $\frac{5}{2}$ | B. | $1+\frac{{\sqrt{3}}}{2}$ | C. | $\frac{3}{2}$ | D. | $1-\frac{{\sqrt{3}}}{2}$ |
16.已知△ABC的角A,B,C所对的边分别为a,b,c,∠C=90°,则$\frac{a+b}{c}$的取值( )
| A. | (0,2) | B. | $({0,\sqrt{2}}]$ | C. | $({1,\sqrt{2}}]$ | D. | $[{1,\sqrt{2}}]$ |