ÌâÄ¿ÄÚÈÝ

12£®ÒÑÖªÕýÕûÊýÊýÁÐ{an}Âú×ãa2=4£¬ÇÒ¶ÔÈÎÒân¡ÊN*£¬ÓÐ2+$\frac{1}{{{a_{n+1}}}}$£¼$\frac{{\frac{1}{a_n}+\frac{1}{{{a_{n+1}}}}}}{{\frac{1}{n}-\frac{1}{n+1}}}$£¼2+$\frac{1}{a_n}$
£¨1£©Çóa1£¬a3£¬²¢²ÂÏëÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÓÉ£¨1£©µÄ²ÂÏ룬ÉèÊýÁÐ{$\frac{1}{a_n}$}µÄǰnÏîºÍΪSn£¬ÇóÖ¤£ºSn£¼2£®

·ÖÎö £¨1£©¶ÔÈÎÒân¡ÊN*£¬ÓÐ2+$\frac{1}{{{a_{n+1}}}}$£¼$\frac{\frac{1}{{a}_{n}}+\frac{1}{{a}_{n+1}}}{\frac{1}{n}-\frac{1}{n+1}}$£¼2+$\frac{1}{a_n}$£¬¿ÉµÃn=1ʱ£¬$2+\frac{1}{{a}_{2}}$£¼2$£¨\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}£©$$£¼2+\frac{1}{{a}_{1}}$£¬»¯Îª£º$\frac{2}{3}£¼{a}_{1}£¼\frac{8}{7}$£¬ÓÉa1ÊÇÕýÕûÊý£¬¿ÉµÃa1=1£®µ±n=2ʱ£¬¿ÉµÃ£º8£¼a3£¼10£¬¿ÉµÃa3=9£¬²ÂÏëan=n2£®
£¨2£©ÓÉ$\frac{1}{{a}_{n}}$=$\frac{1}{{n}^{2}}$£¬µ±n¡Ý2ʱ£¬$\frac{1}{{a}_{n}}$¡Ü$\frac{1}{£¨n-1£©n}$=$\frac{1}{n-1}-\frac{1}{n}$£¬ÀûÓá°ÁÑÏîÇóºÍ¡±·½·¨¼´¿ÉµÃ³ö£®

½â´ð £¨1£©½â£º¶ÔÈÎÒân¡ÊN*£¬ÓÐ2+$\frac{1}{{{a_{n+1}}}}$£¼$\frac{\frac{1}{{a}_{n}}+\frac{1}{{a}_{n+1}}}{\frac{1}{n}-\frac{1}{n+1}}$£¼2+$\frac{1}{a_n}$£¬¿ÉµÃn=1ʱ£¬$2+\frac{1}{{a}_{2}}$£¼2$£¨\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}£©$$£¼2+\frac{1}{{a}_{1}}$£¬¡à$2+\frac{1}{4}$$£¼2£¨\frac{1}{{a}_{1}}+\frac{1}{4}£©$$£¼2+\frac{1}{{a}_{1}}$£¬»¯Îª£º$\frac{2}{3}£¼{a}_{1}£¼\frac{8}{7}$£¬¡ßa1ÊÇÕýÕûÊý£¬¡àa1=1£®
µ±n=2ʱ£¬¿ÉµÃ£º8£¼a3£¼10£¬¿ÉµÃa3=9£¬²ÂÏëan=n2£®
£¨2£©¡ß$\frac{1}{{a}_{n}}$=$\frac{1}{{n}^{2}}$£¬µ±n¡Ý2ʱ£¬$\frac{1}{{a}_{n}}$¡Ü$\frac{1}{£¨n-1£©n}$=$\frac{1}{n-1}-\frac{1}{n}$£¬
¡àSn=$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}$+¡­+$\frac{1}{{a}_{n}}$¡Ü1+$£¨1-\frac{1}{2}£©$+$£¨\frac{1}{2}-\frac{1}{3}£©$+¡­+$£¨\frac{1}{n-1}-\frac{1}{n}£©$=2-$\frac{1}{n}$£¼2£®
¡àSn£¼2£®

µãÆÀ ±¾Ì⿼²éÁËÊýÁеÝÍÆ¹ØÏµ¡¢¡°ÁÑÏîÇóºÍ¡±·½·¨¡¢·ÅËõ·¨¡¢²»µÈʽµÄÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø