题目内容
数列{an}满足:a1=
,a2=
,且a1a2+a2a3+…+anan+1=na1an+1对任何的正整数n都成立,则
+
+…+
的值为( )
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a97 |
分析:a1a2+a2a3+…+anan+1=na1an+1,①;a1a2+a2a3+…+anan+1+an+1an+2=(n+1)a1an+2,②;①-②,得-an+1an+2=na1an+1-(n+1)a1an+2,
-
=4,同理,得
-
=4,整理,得
=
+
,{
}是等差数列.
由此能求出
+
+…+
.
| n+1 |
| an+1 |
| n |
| an+2 |
| n |
| an |
| n-1 |
| an+1 |
| 2 |
| an+1 |
| 1 |
| an |
| 1 |
| an+2 |
| 1 |
| an |
由此能求出
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a97 |
解答:解:a1a2+a2a3+…+anan+1=na1an+1,①
a1a2+a2a3+…+anan+1+an+1an+2=(n+1)a1an+2,②
①-②,得-an+1an+2=na1an+1-(n+1)a1an+2,
∴
-
=4,
同理,得
-
=4,
∴
-
=
-
,
整理,得
=
+
,
∴{
}是等差数列.
∵a1=
,a2=
,
∴等差数列{
}的首项是
=4,公差d=
-
=5-4=1,
=4+(n-1)×1=n+3.
∴
+
+…+
=97× 4+
×1=5044.
故选B.
a1a2+a2a3+…+anan+1+an+1an+2=(n+1)a1an+2,②
①-②,得-an+1an+2=na1an+1-(n+1)a1an+2,
∴
| n+1 |
| an+1 |
| n |
| an+2 |
同理,得
| n |
| an |
| n-1 |
| an+1 |
∴
| n+1 |
| an+1 |
| n |
| an+2 |
| n |
| an |
| n-1 |
| an+1 |
整理,得
| 2 |
| an+1 |
| 1 |
| an |
| 1 |
| an+2 |
∴{
| 1 |
| an |
∵a1=
| 1 |
| 4 |
| 1 |
| 5 |
∴等差数列{
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a1 |
| 1 |
| an |
∴
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a97 |
| 97×96 |
| 2 |
故选B.
点评:本题考查数列的综合应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关题目