题目内容
已知,则______.
已知椭圆E:的两个焦点与短轴的一个端点是直角三角形的3个顶点,直线l:y=-x+3与椭圆E有且只有一个公共点T.
(Ⅰ)求椭圆E的方程及点T的坐标;
(Ⅱ)设O是坐标原点,直线l’平行于OT,与椭圆E交于不同的两点A、B,且与直线l交于点P.证明:存在常数λ,使得∣PT∣2=λ∣PA∣· ∣PB∣,并求λ的值.
设数列满足,.
(Ⅰ)证明:,;
(Ⅱ)若,,证明:,.
在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影.由区域
中的点在直线x+y2=0上的投影构成的线段记为AB,则│AB│=
A.2 B.4 C.3 D.
在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b+c=2acos B.
(Ⅰ)证明:A=2B;
(Ⅱ)若cos B=,求cos C的值.
已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
如图,在平面直角坐标系xOy中,已知直线l:x-y-2=0,抛物线C:y2=2px(p>0).
(1)若直线l过抛物线C的焦点,求抛物线C的方程;
(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.
①求证:线段PQ的中点坐标为;
②求p的取值范围.
已知{an}是等差数列,Sn是其前n项和.若a1+a22=3,S5=10,则a9的值是 .
已知△ABC是边长为1的等边三角形,点分别是边的中点,连接并延长到点,使得,则的值为( )
(A) (B) (C) (D)