题目内容

三角形ABC中,三个内角A、B、C的对边分别为a,b,c,若a2+c2=b2+ac,且a:c=(
3
+1):2
,则角C=
45°
45°
分析:先利用余弦定理求得cosB的值,进而求得B,再利用正弦定理把a:c=(
3
+1):2
中的边换成角的正弦,利用两角和公式化简整理得sinC=cosC,进而求得C.
解答:解:由余弦定理可知cosB=
a2+b2-c2
2ac
=
1
2

∴B=60°
由正弦定理可知
a
c
=
sinA
sinC
=
sin(120°-C)
sinC
=
1
2
cosC+
3
2
sinC
sinC
=
3
+1
2

求得sinC=cosC,进而可知C=45°
故答案为45°
点评:本题主要考查了正弦定理和余弦定理的应用.解题的关键是利用正弦定理和余弦定理完成了边角问题的互化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网