题目内容
已知
=(cosα,sinα),
=(cosβ,sinβ),其中0<α<β<π.
(1)求证:
+
与
-
互相垂直;
(2)若k
+
与
-k
的长度相等,求α-β的值(k为非零的常数).
| a |
| b |
(1)求证:
| a |
| b |
| a |
| b |
(2)若k
| a |
| . |
| b |
| a |
| . |
| b |
(1)证明:∵(
+
)•(
-
)=
2-
2=(cos2α+sin2α)-(cos2β+sin2β)=0
∴
+
与
-
互相垂直
(2)k
+
=(kcosα+cosβ,ksinα+sinβ);
-k
=(cosα-kcosβ,sinα-ksinβ)
|k
+
|=
|
-k
|=
而
=
cos(β-α)=0,
α-β=-
| a |
| b |
| a |
| b |
| a |
| b |
∴
| a |
| b |
| a |
| b |
(2)k
| a |
| b |
| a |
| b |
|k
| a |
| b |
| k2+1+2kcos(β-α) |
|
| a |
| b |
| k2+1-2kcos(β-α) |
而
| k2+1+2kcos(β-α) |
| k2+1+2kcos(β-α) |
cos(β-α)=0,
α-β=-
| π |
| 2 |
练习册系列答案
相关题目