题目内容
1.如果实数x,y满足不等式组$\left\{\begin{array}{l}x≥1\\ x-y+1≤0\\ 2x-y-2≤0\end{array}\right.$则目标函数z=3x-2y的最大值是1.分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.
解答 解:由约束条件$\left\{\begin{array}{l}x≥1\\ x-y+1≤0\\ 2x-y-2≤0\end{array}\right.$作出可行域如图,![]()
联立$\left\{\begin{array}{l}{x-y+1=0}\\{2x-y-2=0}\end{array}\right.$,解得A(3,4).
化目标函数z=3x-2y为y=$\frac{3}{2}x-\frac{z}{2}$,
由图可知,当直线y=$\frac{3}{2}x-\frac{z}{2}$过A时,直线在y轴上的截距最小,z有最大值为1.
故答案为:1.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法与数学转化思想方法,是中档题.
练习册系列答案
相关题目
13.
已知函数f(x)的定义域为[-1,5],部分对应值如下表,f(x)的导函数 f′(x)的图象如图所示.
下列关于函数f(x)的命题:
①函数f(x)的值域为[1,2];
②函数f(x)在[0,2]上是减函数;
③若x∈[-1,t]时,f(x)的最大值是2,则t的最大值为4;
④当1<a<2时,函数y=f(x)-a有4个零点
其中是真命题的是②③.
| x | -1 | 0 | 4 | 5 |
| f(x) | 1 | 2 | 2 | 1 |
①函数f(x)的值域为[1,2];
②函数f(x)在[0,2]上是减函数;
③若x∈[-1,t]时,f(x)的最大值是2,则t的最大值为4;
④当1<a<2时,函数y=f(x)-a有4个零点
其中是真命题的是②③.
11.已知圆O:x2+y2=4(O为坐标原点)经过椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴端点和两个焦点,则椭圆C的标准方程为( )
| A. | $\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1 | B. | $\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1 | C. | $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1 | D. | $\frac{{x}^{2}}{32}$+$\frac{{y}^{2}}{16}$=1 |