题目内容
设函数f(x)=logax(a>0,a≠1),若f(x1x2…x2010)=8,则
【答案】分析:由题设条件知f(x12)+f(x22)+…+f(x20102)=logax12+logax22+…+logax20102=loga(x1x2…x2010)2,由此能够求出f(x1x2…x2010),则可求f(x12)+f(x22)+…+f(x20102)的值.
解答:解::∵f(x)=logax(a>0,a≠1),且f(x1x2…x2010)=8,
∴f(x12)+f(x22)+…+f(x20102)
=logax12+logax22+…+logax20102
=loga(x1x2…x2010)2
=2f(x1x2…x2010)=2×8=16.
故答案为 16.
点评:本题考查对数的运算性质,解题时要注意公式的灵活运用,属于中档题.
解答:解::∵f(x)=logax(a>0,a≠1),且f(x1x2…x2010)=8,
∴f(x12)+f(x22)+…+f(x20102)
=logax12+logax22+…+logax20102
=loga(x1x2…x2010)2
=2f(x1x2…x2010)=2×8=16.
故答案为 16.
点评:本题考查对数的运算性质,解题时要注意公式的灵活运用,属于中档题.
练习册系列答案
相关题目