题目内容

5.已知集合A={(x,y)|(1-a)x2+2xy-ay2≤0},B={(x,y)|3x-5y≥0,x,y>0},且B⊆A,则实数a的最小值为$\frac{55}{34}$.

分析 由B求出$\frac{x}{y}$的范围,把A化为关于$\frac{x}{y}$的不等式,结合B⊆A,可得关于a的不等式求解.

解答 解:由B={(x,y)|3x-5y≥0,x,y>0}={(x,y)|$\frac{x}{y}≥\frac{5}{3}$},
A═{(x,y)|(1-a)x2+2xy-ay2≤0}={(x,y)|$(1-a)\frac{{x}^{2}}{{y}^{2}}+2\frac{x}{y}-a≤0$},
∵B⊆A,∴$(1-a)×(\frac{5}{3})^{2}+2×\frac{5}{3}-a≤0$,解得a$≥\frac{55}{34}$.
∴实数a的最小值为$\frac{55}{34}$.
故答案为:$\frac{55}{34}$.

点评 本题考查集合的包含关系的判定与应用,考查了数学转化思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网