题目内容

5.如图,椭圆C1:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,x轴被曲线C2:y=x2-b截得的线段长等于C1的长半轴长.
(1)求C1的方程;
(2)设C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A、B,直线MA,MB分别与C1相交于D,E
(i)证明:MD⊥ME
(ii)记△MAB,△MDE的面积分别是S1,S2.问:是否存在直线l,使得$\frac{{S}_{1}}{{S}_{2}}$=$\frac{17}{23}$?若存在,求出直线l的方程;若不存在,请说明理由.

分析 (1)由题意可得:$\frac{c}{a}=\frac{\sqrt{3}}{2}$,$2\sqrt{b}$=a,a2=b2+c2.联立解出即可得出.
(2)(i)由题得,直线l的斜率存在,设为k,则直线l的方程为:y=kx,与抛物线方程联立得x2-kx-1=0.设A(x1,y1),B(x2,y2),利用根与系数的关系、斜率计算公式可得:kMA•kMB=-1.即可证明.
(ii)设直线MA的斜率为k1,则直线MA的方程为y=k1x-1.由$\left\{\begin{array}{l}{y={k}_{1}x-1}\\{y={x}^{2}-1}\end{array}\right.$,解得点A的坐标为$({k}_{1},{k}_{1}^{2}-1)$.又直线MB的斜率为-$\frac{1}{{k}_{1}}$,同理可得点B的坐标为$(-\frac{1}{{k}_{1}},\frac{1}{{k}_{1}^{2}}-1)$.可得S1=$\frac{1}{2}$|MA|•|MB|=$\frac{1+{k}_{1}^{2}}{2|{k}_{1}|}$.同理联立$\left\{\begin{array}{l}{y={k}_{1}x-1}\\{{x}^{2}+4{y}^{2}+4=0}\end{array}\right.$,可得D的坐标为$(\frac{8{k}_{1}}{1+4{k}_{1}^{2}},\frac{4{k}_{1}^{2}-1}{1+4{k}_{1}^{2}})$.同理可得点E的坐标为$(\frac{-8{k}_{1}}{4+{k}_{1}^{2}},\frac{4-{k}_{1}^{2}}{4+{k}_{1}^{2}})$.可得S2=$\frac{1}{2}$|MD|•|ME|,利用$\frac{{S}_{1}}{{S}_{2}}$=$\frac{1}{64}$$(4{k}_{1}^{2}+\frac{4}{{k}_{1}^{2}}+17)$=$\frac{17}{32}$,解得${k}_{1}^{2}$,由点A,B的坐标得,k=${k}_{1}-\frac{1}{{k}_{1}}$.即可得出.

解答 解:(1)由题意可得:$\frac{c}{a}=\frac{\sqrt{3}}{2}$,$2\sqrt{b}$=a,a2=b2+c2
联立解得:a=2,b=1,c=$\sqrt{3}$.
故C1的方程方程为:$\frac{{x}^{2}}{4}+{y}^{2}$=1.
(2)(i)由题得,直线l的斜率存在,设为k,则直线l的方程为:y=kx,
由$\left\{\begin{array}{l}{y=kx}\\{y={x}^{2}-1}\end{array}\right.$,得x2-kx-1=0.设A(x1,y1),B(x2,y2),
于是x1+x2=k,x1•x2=-1,又点M的坐标为(0,-1).
所以kMA•kMB=$\frac{{y}_{1}+1}{{x}_{1}}$•$\frac{{y}_{2}+1}{{x}_{2}}$=$\frac{(k{x}_{1}+1)(k{x}_{2}+1)}{{x}_{1}{x}_{2}}$=$\frac{{k}^{2}{x}_{1}{x}_{2}+k({x}_{1}+{x}_{2})+1}{{x}_{1}{x}_{2}}$=$\frac{-{k}^{2}+{k}^{2}+1}{-1}$=-1.
故MA⊥MB,即MD⊥ME.
(ii)设直线MA的斜率为k1,则直线MA的方程为y=k1x-1.
由$\left\{\begin{array}{l}{y={k}_{1}x-1}\\{y={x}^{2}-1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=0}\\{y=-1}\end{array}\right.$,或$\left\{\begin{array}{l}{x={k}_{1}}\\{y={k}_{1}^{2}-1}\end{array}\right.$.则点A的坐标为$({k}_{1},{k}_{1}^{2}-1)$.
又直线MB的斜率为-$\frac{1}{{k}_{1}}$,同理可得点B的坐标为$(-\frac{1}{{k}_{1}},\frac{1}{{k}_{1}^{2}}-1)$.
于是S1=$\frac{1}{2}$|MA|•|MB|=$\frac{1}{2}\sqrt{1+{k}_{1}^{2}}$×|k1|×$\sqrt{1+\frac{1}{{k}_{1}^{2}}}$×$|-\frac{1}{{k}_{1}}|$=$\frac{1+{k}_{1}^{2}}{2|{k}_{1}|}$.
由$\left\{\begin{array}{l}{y={k}_{1}x-1}\\{{x}^{2}+4{y}^{2}+4=0}\end{array}\right.$,得$(1+4{k}_{1}^{2})$x2-8k1x=0.
解得$\left\{\begin{array}{l}{x=0}\\{y=-1}\end{array}\right.$,或$\left\{\begin{array}{l}{x=\frac{8{k}_{1}}{1+4{k}_{1}^{2}}}\\{y=\frac{4{k}_{1}^{2}-1}{1+4{k}_{1}^{2}}}\end{array}\right.$,
则点D的坐标为$(\frac{8{k}_{1}}{1+4{k}_{1}^{2}},\frac{4{k}_{1}^{2}-1}{1+4{k}_{1}^{2}})$.
又直线ME的斜率为-$\frac{1}{{k}_{1}}$.
同理可得点E的坐标为$(\frac{-8{k}_{1}}{4+{k}_{1}^{2}},\frac{4-{k}_{1}^{2}}{4+{k}_{1}^{2}})$.
于是S2=$\frac{1}{2}$|MD|•|ME|=$\frac{32(1+{k}_{1}^{2})|{k}_{1}|}{(1+4{k}_{1}^{2})({k}_{1}^{2}+4)}$.
故$\frac{{S}_{1}}{{S}_{2}}$=$\frac{1}{64}$$(4{k}_{1}^{2}+\frac{4}{{k}_{1}^{2}}+17)$=$\frac{17}{32}$,解得${k}_{1}^{2}$=4,或${k}_{1}^{2}$=$\frac{1}{4}$.
又由点A,B的坐标得,k=$\frac{{k}_{1}^{2}-\frac{1}{{k}_{1}^{2}}}{{k}_{1}+\frac{1}{{k}_{1}}}$=${k}_{1}-\frac{1}{{k}_{1}}$.
所以k=$±\frac{3}{2}$.
故满足条件的直线l存在,且有两条,其方程为y=$±\frac{3}{2}$x.

点评 本题考查了椭圆与抛物线的标准方程及其性质、直线与椭圆抛物线相交问题、一元二次方程的根与系数的关系、斜率计算公式、三角形面积计算公式,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网