题目内容

各项均为正数的数列{an}中,a1=1,Sn是数列{an}的前n项和,对任意n∈N*,有2Sn=2pan2+pan-p(p∈R)
(1)求常数p的值;
(2)求数列{an}的通项公式;
(3)记bn=
4Snn+3
2n
,求数列{bn}的前n项和T.
分析:(1)根据a1=1,对任意的n∈N*,有2Sn=2pan2+pan-p,令n=1,解方程即可求得结果;
(2)由2Sn=2an2+an-1,知2Sn-1=2an-12+an-1-1,(n≥2),所以(an-an-1-1)(an+an-1)=0,由此能求出数列{an}的通项公式.
(3)根据bn=
4Sn
n+3
2n
求出数列{bn}的通项公式,利用错位相减法即可求得结果.
解答:解:(1)∵a1=1,对任意的n∈N*,有2Sn=2pan2+pan-p
∴2a1=2pa12+pa1-p,即2=2p+p-p,解得p=1;
(2)2Sn=2an2+an-1,①
2Sn-1=2an-12+an-1-1,(n≥2),②
①-②即得(an-an-1-
1
2
)(an+an-1)=0,
因为an+an-1≠0,所以an-an-1-
1
2
=0,
an=
n+1
2

(3)2Sn=2an2+an-1=2×
(n+1)2
4
n+1
2
-1

∴Sn=
n2+3n
4

bn=
4Sn
n+3
2n
=n•2n
Tn=1×21+2×22+…+n•2n
又2Tn=1×22+2×23+…+(n-1)•2n+n2n+1
④-③Tn=-1×21-(22+23+…+2n)+n2n+1=(n-1)2n+1+2
∴Tn=(n-1)2n+1+2
点评:本题考查数列的性质和应用,数列前n项和与数列通项公式的关系,以及错位相减法求数列的前n项和,考查分析解决问题的能力和运算能力,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网