题目内容
各项均为正数的数列{an}中,a1=1,Sn是数列{an}的前n项和,对任意n∈N*,有2Sn=2pan2+pan-p(p∈R)(1)求常数p的值;
(2)求数列{an}的通项公式;
(3)记bn=
| 4Sn | n+3 |
分析:(1)根据a1=1,对任意的n∈N*,有2Sn=2pan2+pan-p,令n=1,解方程即可求得结果;
(2)由2Sn=2an2+an-1,知2Sn-1=2an-12+an-1-1,(n≥2),所以(an-an-1-1)(an+an-1)=0,由此能求出数列{an}的通项公式.
(3)根据bn=
•2n求出数列{bn}的通项公式,利用错位相减法即可求得结果.
(2)由2Sn=2an2+an-1,知2Sn-1=2an-12+an-1-1,(n≥2),所以(an-an-1-1)(an+an-1)=0,由此能求出数列{an}的通项公式.
(3)根据bn=
| 4Sn |
| n+3 |
解答:解:(1)∵a1=1,对任意的n∈N*,有2Sn=2pan2+pan-p
∴2a1=2pa12+pa1-p,即2=2p+p-p,解得p=1;
(2)2Sn=2an2+an-1,①
2Sn-1=2an-12+an-1-1,(n≥2),②
①-②即得(an-an-1-
)(an+an-1)=0,
因为an+an-1≠0,所以an-an-1-
=0,
∴an=
(3)2Sn=2an2+an-1=2×
+
-1,
∴Sn=
,
∴bn=
•2n=n•2n
Tn=1×21+2×22+…+n•2n③
又2Tn=1×22+2×23+…+(n-1)•2n+n2n+1 ④
④-③Tn=-1×21-(22+23+…+2n)+n2n+1=(n-1)2n+1+2
∴Tn=(n-1)2n+1+2
∴2a1=2pa12+pa1-p,即2=2p+p-p,解得p=1;
(2)2Sn=2an2+an-1,①
2Sn-1=2an-12+an-1-1,(n≥2),②
①-②即得(an-an-1-
| 1 |
| 2 |
因为an+an-1≠0,所以an-an-1-
| 1 |
| 2 |
∴an=
| n+1 |
| 2 |
(3)2Sn=2an2+an-1=2×
| (n+1)2 |
| 4 |
| n+1 |
| 2 |
∴Sn=
| n2+3n |
| 4 |
∴bn=
| 4Sn |
| n+3 |
Tn=1×21+2×22+…+n•2n③
又2Tn=1×22+2×23+…+(n-1)•2n+n2n+1 ④
④-③Tn=-1×21-(22+23+…+2n)+n2n+1=(n-1)2n+1+2
∴Tn=(n-1)2n+1+2
点评:本题考查数列的性质和应用,数列前n项和与数列通项公式的关系,以及错位相减法求数列的前n项和,考查分析解决问题的能力和运算能力,属中档题.
练习册系列答案
相关题目