题目内容

11.氮的重要化合物如氨(NH3)、肼(N2H4)、三氟化氮(NF3)等,在生产、生活中具有重要作用.
(1)利用NH3的还原性可消除氮氧化物的污染,相关热化学方程式如下:
H2O(l)═H2O(g)△H1=44.0kJ•mol-1
N2(g)+O2(g)═2NO(g)△H2=229.3kJ•mol-1
4NH3(g)+5O2(g)═4NO(g)+6H2O(g)△H3=-906.5kJ•mol-1
4NH3(g)+6NO(g)═5N2(g)+6H2O(l)△H4
则△H4=-2317kJ•mol-1
(2)使用NaBH4为诱导剂,可使Co2+与肼在碱性条件下发生反应,制得高纯度纳米钴,该过程不产生有毒气体.
①写出该反应的离子方程式:2Co2++N2H4+4OH-=2Co↓+N2↑+4H2O;
②在纳米钴的催化作用下,肼可分解生成两种气体,其中一种能使湿润的红色石蕊试纸变蓝.若反应在不同温度下达到平衡时,混合气体中各组分的体积分数如下图1所示,则N2H4发生分解反应的化学方程式为:3N2H4N2+4NH3;为抑制肼的分解,可采取的合理措施有降低反应温度(任写一种).

(3)在微电子工业中NF3常用作半导体、液晶和薄膜太阳能电池等生产过程的蚀刻剂,在对硅、氮化硅等材料进行蚀刻时具有非常优异的蚀刻速率和选择性,在被蚀刻物表明不留任何残留物,对表面物污染.工业上通过电解含NH4F等的无水熔融物生产NF3,其电解原理如上图2所示.
①a电极为电解池的阳(填“阴”或“阳”)极,写出该电极的电极反应式:NH4++3F--6e-=NF3+4H+
②以NF3对氮化硅(Si3N4)材料的蚀刻为例,用反应方程式来解释为什么在被蚀刻物表面不留任何残留物4NF3+Si3N4=4N2↑+3SiF4↑.
③气体NF3不可燃但可助燃,故气体NF3应远离火种且与还原剂、易燃或可燃物等分开存放,结构决定性质,试从结构角度加以分析NF3分子中N为+3价,有较强氧化性.
④能与水发生反应,生成两种酸及一种气态氧化物,试写出相应的化学方程式3NF3+5H2O=2NO↑+9HF+HNO3

分析 (1)H2O(l)=H2O(g)△H1=44.0kJ•mol-1 (i)
N2(g)+O2(g)=2NO(g)△H2=229.3kJ•mol-1 (ii)
4NH3(g)+5O2(g)=4NO(g)+6H2O(g)△H3=-906.5kJ•mol-1 (iii)
由盖斯定律可知(iii)-(ii)×5-(i)×6得:4NH3(g)+6NO(g)=5N2(g)+6H2O(l);
(2)①依据题意,反应物为Co2+与肼(N2H4)、碱性条件下存在OH-,生成物为:钴单质,据此得出Co的化合价降低,故N的化合价升高,只能为0价,即氮气,依据氧化还原反应得失电子守恒回答即可;
②使湿润的红色石蕊试纸变蓝的气体为氨气,由图1得知:温度越高,肼的百分含量越低,即分解的越快;
(3)①电解含NH4F等的无水熔融物生产NF3,N元素被氧化,则a为阳极;
②NF3与Si3N4发生氧化还原反应,生成氮气和四氟化硅,无残留;
③NF3分子中N为+3价,有较强氧化性,易发生氧化还原反应;
④NF3与水反应生成硝酸和HF酸,方程式为3NF3+5H2O=2NO↑+9HF+HNO3

解答 解:(1)H2O(l)=H2O(g)△H1=44.0kJ•mol-1 (i)
N2(g)+O2(g)=2NO(g)△H2=229.3kJ•mol-1 (ii)
4NH3(g)+5O2(g)=4NO(g)+6H2O(g)△H3=-906.5kJ•mol-1 (iii)
(iii)-(ii)×5-(i)×6得:4NH3(g)+6NO(g)=5N2(g)+6H2O(l),故△H4=-906.5-(229.3×5)-(44×6)=-2317kJ•mol-1
故答案为:-2317;
(2)①依据题意,反应物为Co2+与肼(N2H4)、碱性条件下存在OH-,生成物为:钴单质,据此得出Co的化合价降低,故N的化合价升高,只能为0价,即氮气,据此得出还有水生成,氧化还原反应中存在得失电子守恒以及元素守恒,故此反应的离子反应方程式为:2Co2++N2H4+4OH-=2Co↓+N2↑+4H2O,
故答案为:2Co2++N2H4+4OH-=2Co↓+N2↑+4H2O;
②使湿润的红色石蕊试纸变蓝的气体为氨气,即肼分解生成氨气,依据元素守恒得知另外一种产物为氮气,故化学反应方程式为:3N2H4N2+4NH3,由图1可知,温度越高,肼的体积分数含量越低,故要抑制肼的分解,应降低反应温度,故答案为:3N2H4N2+4NH3;降低反应温度;
(3)①电解含NH4F等的无水熔融物生产NF3,N元素被氧化,则a为阳极,发生NH4++3F--6e-=NF3+4H+
故答案为:阳;NH4++3F--6e-=NF3+4H+
②NF3与Si3N4发生氧化还原反应,反应方程式为4NF3+Si3N4=4N2↑+3SiF4↑,生成氮气和四氟化硅,无残留,故答案为:4NF3+Si3N4=4N2↑+3SiF4↑;
③NF3分子中N为+3价,有较强氧化性,易发生氧化还原反应,故答案为:NF3分子中N为+3价,有较强氧化性,
④NF3与水反应生成硝酸和HF酸,方程式为3NF3+5H2O=2NO↑+9HF+HNO3,故答案为:3NF3+5H2O=2NO↑+9HF+HNO3

点评 本题考查较为综合,涉及盖斯定律的应用、氧化还原反应方程式书写、电解池反应原理等知识,为高频考点,侧重于学生的分析、计算能力的考查,综合性较强,难度较大,注意相关知识的整理归纳.

练习册系列答案
相关题目
2.亚氯酸钠(NaClO2)是一种高效氧化剂、漂白剂.已知:NaClO2饱和溶液在温度低于38℃时析出的晶体是NaClO2•3H2O,高于38℃时析出晶体是NaClO2,高于60℃时NaClO2分解成NaClO3和NaCl.某化学探究小组开展如图所示实验制取NaClO2晶体并测定其纯度.回答下列问题

(1)用50%双氧水配置30%的H2O2溶液,需要的玻璃仪器除玻璃棒、胶头滴管、烧杯外,还需要量筒(填仪器名称);图装置C的作用是防止D瓶溶液倒吸到B瓶中.
(2)装置D中反应生成NaClO2的化学方程式为2NaOH+2ClO2+H2O2=2NaClO2+2H2O+O2.反应后溶液中阴离子除ClO2、ClO3、Cl、Cl0、OH外还可能含有一种阴离子是SO42-,检验该离子的方法是取少量反应后的溶液,先加足量的盐酸,再加BaCl2溶液,若产生白色沉淀,则说明含有SO42-.产生该离子最可能的原因是a.
a.B中有SO2气体产生,并有部分进入D装置内
b.B中浓硫酸挥发进入D中与NaOH中和
c.B中的硫酸进入到D装置内
(3)请补充从反应后的溶液中获得NaClO2晶体的操作步骤:①减压,55℃蒸发结晶;②趁热过滤;③用38℃~60℃热水洗涤;④低于60℃干燥;得到成品.
(4)如果撤去D中的冷水浴,可能导致产品中混有的杂质是NaClO3和NaCl.
(5)测定样品中NaClO2的纯度:准确称一定质量的样品,加入适量蒸馏水和过量KI晶体,在酸性条件下发生反应:ClO2-+4I-+4H+=2H2O+2I2+Cl-.将所得混合液体稀释成100ml待测溶液.取25.00ml待测溶液,加入淀粉溶液做指示剂,用c mol•L-1NaS2O3标准液滴定至终点,测得消耗标准溶液体积的平均值为V ml(已知:I2+2S2O32-=2I-+S4O42-
①确认滴定终点的现象是滴加最后一滴Na2S2O3标准液时,溶液蓝色恰好褪去且半分钟内不复原,说明到达滴定终点.
②所称取的样品中NaClO2的物质的量为c•V•10-3mol(用含C、V的代数式表示).
3.氨是一种重要的化工产品,是氮肥工业、有机合成工业以及制造硝酸、铵盐和纯碱的原料,也是一种常用的制冷剂.
(1)实验室制备氨气的化学反应方程式为2NH4Cl+Ca(OH)2$\frac{\underline{\;\;△\;\;}}{\;}$2NH3↑+CaCl2+2H2O.
(2)工业合成氨的反应方程式为:N2(g)+3H2(g)?2NH3(g)△H.下图Ⅰ是合成氨反应的能量与反应过程相关图(未使用催化剂);图Ⅱ是合成氨反应在2L容器中、相同投料情况下、其它条件都不变时,某一反应条件的改变对反应的影响图.

下列说法正确的是AEFG.
A.△H=-92.4kJ/mol
B.使用催化剂会使K1的数值增大
C.实际工业生产中反应的温度越低越好
D.图Ⅱ是不同压强下反应体系中氨的物质的量与反应时间关系图,且PA<PB
E.图Ⅱ是不同温度下反应体系中氨的物质的量与反应时间关系图,且TA>TB
F.该反应的平衡常数KA<KB
G.在曲线A条件下,反应从开始到平衡,消耗N2的平均速率为为$\frac{{n}_{1}}{4{t}_{1}}$mol•L-1•min-1
(3)一定温度下,向一个容积为2L的密闭容器中通入2molN2和7molH2,达到平衡时测得容器内的压强为起始时的$\frac{7}{9}$倍,则此温度下的平衡常数为0.25.在同一温度、同一容器中,将起始物质改为a molN2、bmolH2、cmolNH3(a,b,c均不为零),欲使平衡混合物中各物质的质量与原平衡相同,则a、b满足的关系为b-3a=1(用含a、b的表达式表示),且欲使反应在起始时向逆反应方向进行,c的取值范围是2<c<4.
(4)已知H2(g)的燃烧热为285.8kJ/mol,试写出表示NH3(g)燃烧热的热化学反应方程式NH3(g)+$\frac{3}{4}$O2(g)=$\frac{1}{2}$N2(g)+$\frac{3}{2}$H2O(l)△H=-382.5KJ/mol.以氨为燃料可以设计制造氨燃料电池(电极材料均为惰性电极,KOH溶液作电解质溶液),该电池的负极电极反应式为2NH3-6e-+6OH-═N2+6H2O.经测定,该电池工作过程中每放出1molN2实际提供460kJ的电能,则该燃料电池的实际效率为60.1%(燃料电池的实际效率是指电池实际提供的电能占燃料电池反应所能释放出的全部能量的百分数).

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网