题目内容
11.(1)用电弧法合成的储氢纳米碳管常伴有大量的碳纳米颗粒(杂质),这种颗粒可用如下氧化法提纯,请完成该反应的化学方程式,并在方框内填上系数.
□C+□KMnO4+□H2SO4=□CO2↑+□MnSO4+□K2SO4+□6H2O
(2)将不同量的CO(g)和H2O(g)分别通入到体积为2L的恒容密闭容器中,进行反应
CO(g)+H2O(g)?CO2(g)+H2(g),得到如下二组数据:
| 实验组 | 温度℃ | 起始量/mol | 平衡量/mol | 达到平衡所需时间/min | ||
| CO | H2O | H2 | CO | |||
| 1 | 650 | 4 | 2 | 1.6 | 2.4 | 6 |
| 2 | 900 | 2 | 1 | 0.4 | 1.6 | 3 |
(保留小数点后二位数,下同).
②实验2条件下平衡常数K=0.17,该反应为放热(填“吸热”或“放热”)反应.
(3)已知在常温常压下:
①2CH3OH(l)+3O2(g)═2CO2(g)+4H2O(g)△H1=-1275.6kJ/mol
②2CO (g)+O2(g)═2CO2(g)△H2=-566.0kJ/mol
③H2O(g)═H2O(l)△H3=-44.0kJ/mol
写出甲醇不完全燃烧生成一氧化碳和气态水的热化学方程式:CH3OH(l)+O2(g)=CO(g)+2H2O(g)△H=-354.8KJ/mol.
(4)某实验小组依据甲醇燃烧的反应原理,设计如图所示的电池装置.
①该电池正极的电极反应式为:O2+4e-+2H2O=4OH-;该电极上每消耗1.6g氧气,转移的电子数为0.2mol.
②该电池工作时,溶液中的OH-向负(填“正”或“负”)极移动.
分析 (1)根据氧化还原反应中得失电子数相等和原子守恒来配平化学方程式;
(2)①由表中数据可知,CO的物质的量变化量为4mol-2.4mol=1.6mol,根据v=$\frac{\frac{△n}{V}}{△t}$计算v(CO),再利用速率之比等于化学计量数之比计算v(CO2);
②利用三段式计算平衡时,各组分的物质的量,该反应是气体体积不变的反应,故利用物质的量代替浓度代入平衡常数表达式计算平衡常数;第二组温度比第一组高,反应物物质的量比第一组减半,但是平衡时CO2的物质的量比第一组的一半少,表明该反应为放热反应;
(3)根据热化学方程式和盖斯定律计算进行书写;
(4)①该燃料电池中,负极反应为CH3OH-6e-+2OH-=CO32-+3H2O,正极上氧气得电子发生还原反应,电极反应为O2+2H2O+4e-=4OH-;根据电极反应式进行计算;
②原电池原理可知溶液中阴离子移向负极.
解答 解:(1)碳元素化合价从0价变化为+4价,锰元素化合价从+7价变化为+2价,依据电子守恒,电子转移总数为20,所以碳和二氧化碳前系数为5,高锰酸钾和硫酸锰化学式前为4,结合原子守恒配平离子方程式为:5 C+4KMnO4+6 H2SO4=5CO2↑+4MnSO4+2K2SO4+6H2O;
故答案为:5、4、6、5、4、2、6H2O;
(2)①依据化学平衡三段式列式计算,
CO(g)+H2O(g)?CO2(g)+H2(g)
起始量(mol) 4 2 0 0
变化量(mol) 1.6 1.6 1.6 1.6
平衡量(mol) 2.4 0.4 1.6 1.6
所以以v (CO2) 表示的反应速率=$\frac{\frac{1.6mol}{2L}}{6min}$=0.13mol/(L•min);
故答案为:0.13mol/(L•min);
②实验1 CO(g)+H2O(g)?CO2(g)+H2(g)
起始量(mol/L) 2 1 0 0
变化量(mol/L) 0.8 0.8 0.8 0.8
平衡量(mol/L) 1.2 0.2 0.8 0.8
K1=$\frac{0.8×0.8}{1.2×0.2}$=2.7
实验2 CO(g)+H2O(g)?CO2(g)+H2(g)
起始量(mol/L) 1 0.5 0 0
变化量(mol/L) 0.2 0.2 0.2 0.2
平衡量(mol/L) 0.8 0.3 0.2 0.2
K2=$\frac{0.2×0.2}{0.8×0.3}$=0.17
温度升高,平衡常数减小,说明平衡逆向进行,逆向是吸热反应,正反应方向是放热反应;
故答案为:0.17; 放热;
(3)①2CH3OH(l)+3O2(g)=2CO2(g)+4H2O(g)△H1=-1275.6kJ/mol
②2CO (g)+O2(g)=2CO2(g)△H2=-566.0kJ/mol
③H2O(g)=H2O(l)△H3=-44.0kJ/mol
依据盖斯定律①-②得到2CH3OH(l)+2O2(g)=2CO(g)+4H2O(g)△H=-709.6KJ/mol;
化简得到甲醇不完全燃烧生成一氧化碳和气态水的热化学方程式:CH3OH(l)+O2(g)=CO(g)+2H2O(g)△H=-354.8KJ/mol;
故答案为:CH3OH(l)+O2(g)=CO(g)+2H2O(g)△H=-354.8KJ/mol;
(4)①甲醇燃料电池,甲醇在负极失电子发生氧化反应碱溶液中生成碳酸盐,正极氧气得到电子生成氢氧根离子,正极电极反应为:O2+4e-+2 H2O=4OH-,根据电极反应可知,每消耗1mol氧气,转移4mol电子,所以该电极上消耗1.6g即0.05mol氧气时,转移的电子数为0.2mol,
故答案为:O2+4e-+2 H2O=4OH-;0.2;
②该电池工作时,依据原电池原理可知溶液中的OH-向负极移动,
故答案为:负.
点评 本题考查了氧化还原反应配平,原电池原理的分析判断,化学平衡影响因素和平衡常数的计算方法,热化学方程式计算应用,掌握基础是关键,题目难度中等.
| A. | 2Q2>Q1=92.4kJ | B. | 2Q2=Q1=92.4kJ | C. | 2Q2<Q1<92.4kJ | D. | 2Q2=Q1<92.4kJ |
| A. | 碳和水反应吸收131.3kJ能量 | |
| B. | 1mol碳和1mol水反应生成一氧化碳和氢气并吸收131.3kJ热量 | |
| C. | 在298K时,1mol碳(s)和1molH2O(g)反应生成CO(g)和H2(g),吸热131.3kJ | |
| D. | 1个固态碳原子和1分子水蒸气反应吸热131.1kJ |
| 时间t/s | 0 | 50 | 150 | 250 | 350 |
| n(PCl3)/mol | 0 | 0.16 | 0.19 | 0.2 | 0.2 |
(1)反应在前50s的平均速率v(PCl5)=0.0016mol/(L•s).
(2)温度为T时,该反应的化学平衡常数=0.025.
(3)上述反应到达平衡状态时,PCl3的体积分数为16.7%.
要提高平衡时PCl3的体积分数,可采取的措施有CD.
A.温度不变,压缩容器体积增大压强 B.使用高效催化剂
C.温度和体积不变,减小PCl5的起始量 D.体积不变,提高反应温度
(4)在温度为T时,若起始时向容器中充入0.5mol PCl5和a mol Cl2平衡时PCl5的转化率仍为20%,则a=0.1.
(5)在热水中,五氯化磷完全水解,生成磷酸(H3PO4),该反应的化学方程式是PCl5+4H2O=H3PO4+5HCl.
(1)此流程的第II步反应为:CO(g)+H2O(g)?H2(g)+CO2(g),该反应的平衡常数的表达式为$\frac{c({H}_{2})×c(C{O}_{2})}{c(CO)×c({H}_{2}O)}$;反应的平衡常数随温度的变化如下表:
| 温度/℃ | 400 | 500 | 830 |
| 平衡常数K | 10 | 9 | 1 |
(2)在500℃,以下表的物质的量(按照CO、H2O、H2、CO2的顺序)投入恒容密闭容器中进行上述第II步反应,达到平衡后下列关系正确的是AD.
| 实验编号 | 反应物投入量 | 平衡时H2浓度 | 吸收或放出的热量 | 反应物转化率 |
| A | 1、1、0、0 | c1 | Q1 | α1 |
| B | 0、0、2、2 | c2 | Q2 | α2 |
| C | 2、2、0、0 | c3 | Q3 | α3 |
(3)在一个绝热等容容器中,不能判断此流程的第II步反应达到平衡的是②③.
①体系的压强不再发生变化 ②混合气体的密度不变
③混合气体的平均相对分子质量不变 ④各组分的物质的量浓度不再改变
⑤体系的温度不再发生变化⑥v(CO2)正=v(H2O)
(4)下图表示此流程的第II步反应,在t1时刻达到平衡、在t2时刻因改变某个条件浓度发生变化的情况:图中t2时刻发生改变的条件是降低温度、增加水蒸汽的量(写出两种).若t4时刻通过改变容积的方法将压强增大为原先的两倍,在图中t4和t5区间内画出CO、CO2浓度变化曲线,并标明物质(假设各物质状态均保持不变).