题目内容

5.质量为0.8kg的重物A先静止在水平桌面上,与桌面的接触面积为100cm2,然后利用如图所示的装置,在10秒内将重物匀速提升10m,所用的拉力F大小为5N,若绳重和摩擦不计,动滑轮有质量,计算时g取10N/kg.
求:(1)重物静止时对桌面的压强.
(2)提升该物体时做的总功.
(3)动滑轮的重力.
(4)若仍用此装置将另一个重为18N的重物B也匀速提升10m,此时的机械效率为多少?

分析 (1)重物静止时对桌面的压力和自身的重力相等,根据G=mg求出其大小,再根据p=$\frac{F}{S}$求出对桌面的压强;
(2)由图可知滑轮组绳子的有效股数为2,根据s=nh求出绳端移动的距离,根据W=Fs求出提升该物体时做的总功;
(3)绳重和摩擦不计,根据F=$\frac{1}{n}$(G+G)求出动滑轮的重力;
(4)克服物体B重力所做的功为有用功,克服物体B的重力和动滑轮的重力所做的功为总功,根据η=$\frac{{W}_{有}}{{W}_{总}}$×100%=$\frac{Gh}{(G+{G}_{动})h}$×100%=$\frac{G}{G+{G}_{动}}$×100%求出滑轮组的机械效率.

解答 解:(1)重物静止时对桌面的压力:
F=GA=mg=0.8kg×10N/kg=8N,
对桌面的压强:
p=$\frac{F}{S}$=$\frac{8N}{0.01{m}^{2}}$=800Pa;
(2)由图可知,n=2,则绳端移动的距离:
s=nh=2×10m=20m,
提升该物体时做的总功:
W=Fs=5N×20m=100J;
(3)绳重和摩擦不计,由F=$\frac{1}{n}$(G+G)可得,动滑轮的重力:
G=nF-GA=2×5N-8N=2N;
(4)用此装置将重为18N的重物B匀速提升10m时滑轮组的机械效率:
η=$\frac{{G}_{B}}{{G}_{B}+{G}_{动}}$×100%=$\frac{18N}{118N+2N}$×100%=90%.
答:(1)重物静止时对桌面的压强是800Pa;
(2)提升该物体时做的总功是100J;
(3)动滑轮的重力是2N;
(4)若仍用此装置将另一个重为18N的重物B也匀速提升10m,此时的机械效率为90%.

点评 本题考查了压强、总功、动滑轮重力、机械效率的计算,明确有用功和总功是解题的关键,要注意水平面上物体的压力和自身的重力相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网