ÌâÄ¿ÄÚÈÝ
5£®ÎªÁË̽¾¿£ºÑ¹Á¦µÄ×÷ÓÃЧ¹ûÓëÊÜÁ¦Ãæ»ýºÍѹÁ¦µÄ´óСÊÇ·ñÓйأ®Ð¡¸ÕÕÒÁËÕâЩÆ÷²Ä£º¹æ¸ñÏàͬµÄÁ½¿éº£ÃàºÍÏàͬµÄÈý±¾×ֵ䣮Éè¼ÆÁËÏÂÃæµÄʵÑ飨Èçͼ£©£ºÍ¼£¨a£©º£ÃàÆ½·ÅÔÚ×ÀÃæÉÏ£»Í¼£¨b£©º£ÃàÉÏÆ½·ÅÒ»±¾×ֵ䣻ͼ£¨c£©º£ÃàÉϵþ·ÅÁ½±¾×ֵ䣻ͼ£¨d£©º£ÃÞÉÏÁ¢·ÅÒ»±¾×ֵ䣻ͼ£¨e£©Ò»±¾×ֵ䯽·ÅÔÚ×ÀÃæÉÏ£®
£¨1£©ÊµÑéÖУ¬Ð¡¸ÕÊǸù¾Ýº£ÃàµÄÐαä³Ì¶ÈÀ´±È½ÏѹÁ¦µÄ×÷ÓÃЧ¹û£»ÏÂÁÐÑо¿ÊÂÀýÖУ¬Ò²²ÉÓÃÕâÖÖÑо¿·½·¨µÄÊÇA£»
A£®ÓÃѹǿ¼ÆÁ½¹ÜÖÐÒºÃæµÄ¸ß¶È²î£¬±È½ÏÒºÌåÄÚ²¿Ñ¹Ç¿µÄ´óС
B£®Å£¶Ù¶Ô´óÁ¿µÄʵÑéÊÂʵ½øÐÐÉîÈëÑо¿£¬×ܽá³öÅ£¶ÙµÚÒ»¶¨ÂÉ
C£®ÔÚÑо¿»¬¶¯Ä¦²ÁÁ¦ÓëѹÁ¦´óСµÄ¹ØÏµÊ±£¬¿ØÖƽӴ¥ÃæµÄ´Ö²Ú³Ì¶ÈÏàͬ
£¨2£©Í¨¹ýʵÑéͼ£¨b£©¡¢£¨c£©£¬¿ÉÒԵóö½áÂÛ£ºÊÜÁ¦Ãæ»ýÒ»¶¨Ê±£¬Ñ¹Á¦Ô½´ó£¬Ñ¹Á¦µÄ×÷ÓÃЧ¹ûÔ½Ã÷ÏÔ£»
£¨3£©Í¨¹ý¹Û²ì±È½Ïͼb¡¢dºóµÃ³ö£ºÔÚѹÁ¦Ò»¶¨Ê±£¬ÊÜÁ¦Ãæ»ýԽС£¬Ñ¹Á¦×÷ÓÃЧ¹ûÔ½Ã÷ÏÔ£»
£¨4£©Éèͼ£¨b£©ÖÐ×Öµä¶Ôº£ÃàµÄѹǿÊÇPb£¬Í¼£¨e£©ÖÐ×Öµä¶Ô×ÀÃæµÄѹǿÊÇPe£¬ÔòPb£¾£¨Ìî¡°£¾¡±¡¢¡°=¡±»ò¡°£¼¡±£©Pe£¬ÔÒòÊÇÓÉÓÚѹÁ¦Ïàͬ£¬bµÄÊÜÁ¦Ãæ»ý½ÏС£®
·ÖÎö £¨1£©Ñ¹Á¦µÄ×÷ÓÃЧ¹ûÖ÷Òª±íÏÖÔÚÎïÌåµÄÐαäÉÏ£¬¿ÉÒÔͨ¹ýº£ÃàµÄÐαä³Ì¶ÈÀ´·´Ó³Ñ¹Á¦×÷ÓÃЧ¹ûÊÇ·ñÃ÷ÏÔ£®ÕâÀï²ÉÓõÄÑо¿·½·¨ÊÇת»»·¨£»
£¨2£©Ó°ÏìѹÁ¦×÷ÓÃЧ¹ûµÄÒòËØÊÇѹÁ¦µÄ´óСºÍÊÜÁ¦Ãæ»ýµÄ´óС£¬Ì½¾¿Ñ¹Á¦µÄ×÷ÓÃЧ¹ûºÍѹÁ¦´óСµÄ¹ØÏµÊ±£¬¾ÍÒª±£Ö¤ÊÜÁ¦Ãæ»ýÒ»¶¨£»
£¨3£©ÒªÌ½¾¿Ñ¹Á¦µÄ×÷ÓÃЧ¹ûºÍÊÜÁ¦Ãæ»ýµÄ¹ØÏµÊ±£¬¾ÍÒª±£Ö¤Ñ¹Á¦µÄ´óСһ¶¨£»
£¨4£©±È½ÏѹǿµÄ´óС£¬¾ÍÊDZȽÏѹÁ¦ºÍÊÜÁ¦Ãæ»ý£¬¸ù¾Ýѹǿ¼ÆË㹫ʽp=$\frac{F}{S}$·ÖÎöѹǿµÄ´óС£»
½â´ð ½â£º£¨1£©Á¦¿ÉÒԸı亣ÃàµÄÐÎ×´£¬Í¨¹ýº£ÃàÐαä³Ì¶È±íʾѹÁ¦×÷ÓÃЧ¹û´óС£®ÕâÀï²ÉÓõÄÑо¿·½·¨ÊÇת»»·¨£®
A¡¢ÓÃѹǿ¼ÆÁ½¹ÜÖÐÒºÃæµÄ¸ß¶È²î£¬±È½ÏÒºÌåÄÚ²¿Ñ¹Ç¿µÄ´óС£¬ËùÓõÄÑо¿·½·¨ÊÇת»»·¨£¬·ûºÏÌâÒ⣻
B¡¢Å£¶Ù¶Ô´óÁ¿µÄʵÑéÊÂʵ½øÐÐÉîÈëÑо¿£¬×ܽá³öÅ£¶ÙµÚÒ»¶¨ÂÉ£¬ËùÓõÄÑо¿·½·¨ÊÇʵÑéÍÆÀí·¨£¬²»·ûºÏÌâÒ⣻
C¡¢ÔÚÑо¿»¬¶¯Ä¦²ÁÁ¦ÓëѹÁ¦´óСµÄ¹ØÏµÊ±£¬¿ØÖƽӴ¥ÃæµÄ´Ö²Ú³Ì¶ÈÏàͬ£¬ËùÓõÄÑо¿·½·¨ÊÇ¿ØÖƱäÁ¿·¨£¬²»·ûºÏÌâÒ⣻
¹ÊÑ¡£ºA£®
£¨2£©·ÖÎö±È½Ïͼ£¨b£©ºÍ£¨c£©µÄʵÑéÏÖÏó¿ÉÖª£¬Á½Í¼µÄÊÜÁ¦Ãæ»ý´óС²»±ä£¬Ñ¹Á¦´óС²»Í¬£¬º£ÃàµÄÐαä³Ì¶È²»Í¬£¬ÇÒѹÁ¦Ô½´ó£¬º£ÃàµÄÐαä³Ì¶ÈÔ½´ó£¬¹Ê¿ÉµÃ½áÂÛ£ºÔÚÊÜÁ¦Ãæ»ýÒ»¶¨Ê±£¬Ñ¹Á¦Ô½´ó£¬Ñ¹Á¦µÄ×÷ÓÃЧ¹ûÔ½Ã÷ÏÔ£®
£¨3£©ÒªÌ½¾¿Ñ¹Á¦µÄ×÷ÓÃЧ¹ûÓëÊÜÁ¦Ãæ»ý´óСµÄ¹ØÏµ£¬Ó¦¿ØÖÆÑ¹Á¦´óС²»±ä£¬¸Ä±äÊÜÁ¦Ãæ»ýµÄ´óС£¬ÓÉͼ¿ÉÖª£¨b£©¡¢£¨d£©Á½Í¼·ûºÏ£®
£¨4£©£¨b£©¡¢£¨e£©Á½Í¼ÖУ¬×ÖµäµÄѹÁ¦Ïàͬ£¬bͼÖÐ×ÖµäѹÔÚº£ÃàÉÏ£¬ÊÜÁ¦Ãæ»ýÊǺ£ÃàµÄÃæ»ý£»eͼÖÐ×ÖµäѹÔÚ×ÀÃæÉÏ£¬ÊÜÁ¦Ãæ»ýÊÇ×ÖµäµÄÃæ»ý£¬
ÒòΪº£ÃàµÄÃæ»ýСÓÚ×ÖµäµÄÃæ»ý£¬ËùÒÔͼ£¨b£©ÖÐ×Öµä¶Ôº£ÃàµÄѹǿÊÇpb´óÓÚͼ£¨e£©ÖÐ×Öµä¶Ô×ÀÃæµÄѹǿÊÇpe£®
¹Ê´ð°¸Îª£º£¨1£©º£ÃàµÄÐαä³Ì¶È£»A£»£¨2£©ÊÜÁ¦Ãæ»ý£»Ñ¹Á¦£»£¨3£©b¡¢d£»£¨4£©£¾£»ÓÉÓÚѹÁ¦Ïàͬ£¬bµÄÊÜÁ¦Ãæ»ý½ÏС£®
µãÆÀ ±¾Ì⿼²éµÄÊÇ̽¾¿Ñ¹Á¦×÷ÓÃЧ¹û¸úʲôÒòËØÓйصÄʵÑ飬»áÓÿØÖƱäÁ¿·¨ºÍת»»·¨Ñо¿Ñ¹Á¦×÷ÓÃЧ¹ûµÄÓ°ÏìÒòËØ£¬ÕÆÎÕѹÁ¦×÷ÓÃЧ¹ûÓëѹÁ¦ºÍÊÜÁ¦Ãæ»ýÓйأ¬Í¨¹ý¶ÔʵÑéÏÖÏóµÄ·ÖÎö£¬µÃ³ö½áÂÛ£®
| A£® | ÆðÖØ»úµÄЧÂÊ¿ÉÒÔ´ïµ½100% | |
| B£® | ½ÌÊÒÀïµÄ´óÆøÑ¹Ç¿Ô¼Îª1¸ö±ê×¼´óÆøÑ¹ | |
| C£® | »ð³µµÄÕíľÊÇΪÁËÔö´óѹǿ | |
| D£® | ѹÁ¦¹ø¹¤×÷ʱÀïÃæµÄѹǿСÓÚÍâÃæµÄ´óÆøÑ¹ |
| Á¬½Ó·½Ê½ | ´®Áª | ²¢Áª |
| µç·ͼ | ||
| µçÁ÷ÌØµã | I=I1=I2 | I=I1+I2 |
| µçÑ¹ÌØµã | U=U1+U2 | U=U1=U2 |
| ×ܵç×è | R=R1+R2 | $\frac{1}{R}$=$\frac{1}{{R}_{1}}$+$\frac{1}{{R}_{2}}$ |
| ·ÖÁ÷·Öѹ | $\frac{{U}_{1}}{{U}_{2}}$=$\frac{{R}_{1}}{{R}_{2}}$ | $\frac{{I}_{2}}{{I}_{1}}$=$\frac{{R}_{1}}{{R}_{2}}$ |
| A£® | µÆË¿¶¶¶¯Óëµç´Å¸ÐÓ¦ÔÀíÓÐ¹Ø | B£® | µçÄÜת»¯Îª»úеÄÜ | ||
| C£® | µÆË¿¶¶¶¯Óë½»Á÷µçÓÐ¹Ø | D£® | µÆË¿¶¶¶¯Óëµç¶¯»úÔÀíÀàËÆ |
| A£® | ¼ÒÍ¥µç·ÖеçѹÊÇ200V£¬¶ÔÈËÌ尲ȫµçѹΪ36V | |
| B£® | ¼ÒÍ¥µç·ÖÐµÄ¿ÕÆø¿ª¹ØÍ»È»¶Ï¿ª£¬ËµÃ÷µç·ÖгöÏÖ¶Ì·ÏÖÏó | |
| C£® | ¼ÒÍ¥µç·ÖÐ¿ÕÆø¿ª¹Ø¿ÉÒÔÆðµ½±£ÏÕË¿µÄ×÷Óà | |
| D£® | ¼ÒÍ¥µç·ÖÐÔÓÐÓõçÆ÷Õý³£¹¤×÷µÄǰÌáÏ£¬ÔÙÔö¼ÓÕý³£¹¤×÷µÄÓõçÆ÷£¬¼ÒÍ¥µç·ÖеÄ×ܵ繦ÂÊÒ»¶¨»áÔö´ó |