ÌâÄ¿ÄÚÈÝ
16£®Ò»Á¾ÊµÑéС³µÑØË®Æ½µØÃæÉϵij¤Ö±¹ìµÀ´ÓNµãÏòÓÒ×öÔÈËÙÖ±ÏßÔ˶¯£¬ÓÐһ̨ÄÜ·¢³öϸ¹âÊøµÄ¼¤¹âÆ÷×°ÔÚÀëµØÃæ3mµÄСת̨ÉÏMµã£¬×ªÌ¨¿ÉÔÚÊúÖ±µÄÆ½ÃæÄÚÔÈËÙת¶¯£¬Ê¹¼¤¹âÊøÔÚÊúÖ±Æ½ÃæÄÚɨÃ裬¼¤¹âÊø×ª¶¯·½ÏòÈçͼËùʾ£¬×ªÒ»ÖÜËùÐèʱ¼äΪ12s£®¿ªÊ¼Ê±£¬¹âÊøÕýºÃÉ䵽С³µÉÏ£¬¾¹ý1.5sºó¹âÊøÓÖÉ䵽С³µÉÏ£¬ÔòС³µµÄÔ˶¯ËÙ¶ÈΪ2m/s£¬Èç¹ûÏëʹС³µÔÙ¾¹ý2.5sºóÓÖ±»¹âÊøÕÕÉäµ½£¬ÔòС³µµÄËٶȱØÐë±ä³É3.64m/s£®
·ÖÎö £¨1£©ÓÉͼ֪¼¤¹âÆ÷µÄ¹âÊøÄæÊ±Õëת¶¯£¬Ð¡³µÏòÓÒÔÈËÙÖ±ÏßÔ˶¯£¬¸ù¾Ý¼¤¹âÆ÷ת¶¯µÄ½Ç¶È·ÖÎö¼ÆËãС³µËÙ¶È£»
£¨2£©¼¤¹âÆ÷¼ÌÐø×ª¶¯ºó¹âÉäµ½Æ½Ãæ¾µÉÏ£¬·´Éäºó¿ÉÔÙ´ÎÉ䵽С³µÉÏ£¬ÓÉ´Ëͼ£¬¸ù¾Ý¹âµÄ·´É䶨ÂɺÍËٶȹ«Ê½¼ÆË㣮
½â´ð ½â£º
£¨1£©¼¤¹âÆ÷¹âÊøÄæÊ±Õëת¶¯1.5sºó¹âÊøÉ䵽С³µÉÏ£¬¹âµÄ´«²¥Â·¾¶ÈçͼËùʾ£º![]()
´Ëʱ¼¤¹âÆ÷ת¶¯µÄ½Ç¶È=$\frac{360¡ã}{12}$¡Á1.5s=45¡ã£¬
ËùÒÔС³µÍ¨¹ýµÄ¾àÀëAN=MN=3m£¬
С³µËÙ¶È£ºv=$\frac{s}{t}$=$\frac{3m}{1.5s}$=2m/s£»
£¨2£©Ê¹Ð¡³µÔÙ¾¹ý2.5sºóÓÖ±»¹âÊøÕÕÉäµ½£¬¼¤¹âÆ÷ת¶¯µÄ½Ç¶È=$\frac{360¡ã}{12}$¡Á£¨1.5s+2.5s£©=120¡ã£¬ÓɹâµÄ·´É䶨ÂÉ×÷³ö¹âµÄ´«²¥Â·¾¶ÈçͼËùʾ£º
£¬
ËùÒÔ¡ÏCMO=180¡ã-120¡ã=60¡ã£¬
ÔÚRt¡÷COMÖУ¬¡ÏCOM=30¡ã£¬CO=$\sqrt{M{O}^{2}-C{M}^{2}}$=$\sqrt{£¨2CM£©^{2}-C{M}^{2}}$=$\sqrt{£¨2¡Á2m£©^{2}-£¨2m£©^{2}}$=2$\sqrt{3}$m£¬
ÔÚ¡÷ONBÖУ¬¡ÏNOB=60¡ã£¬ON=CM+MN=2m+3m=5m£¬
BN=$\sqrt{O{B}^{2}-O{N}^{2}}$=$\sqrt{£¨2ON£©^{2}-O{N}^{2}}$=$\sqrt{£¨2¡Á5m£©^{2}-£¨5m£©^{2}}$=5$\sqrt{3}$m£¬
´ËʱС³µÇ¡ºÃÔ˶¯µ½Bµã£¬ËùÒÔС³µÍ¨¹ýµÄ×Ü·³Ì£ºBN=CO+BN=2$\sqrt{3}$m+5$\sqrt{3}$m=7$\sqrt{3}$m£¬
ËùÒÔС³µÔÚºó2.5sÄÚͨ¹ýµÄ·³Ì£ºAB=BN-AN=7$\sqrt{3}$m-3m¡Ö9.1m£¬
ËùÒÔС³µËٶȱäΪ£ºv¡ä=$\frac{AB}{t¡ä}$=$\frac{9.1m}{2.5s}$=3.64m/s£®
¹Ê´ð°¸Îª£º2m/s£»3.64m/s£®
µãÆÀ ±¾Ì⿼²éËٶȹ«Ê½µÄÓ¦Óú͹âµÄ·´ÉäµÄÀí½â¡¢Ó¦Óã¬Äܸù¾ÝÌâÒ⻳ö¹â·ͼÊǽâÌâµÄ¹Ø¼ü£¬ÓÐÒ»¶¨ÄѶȣ®
| A£® | 5 N | B£® | 6 N | C£® | 1 N | D£® | 10 N |
| A£® | º½Ìì·É»úÓÃÃܶȽϴóµÄвÄÁÏÖÆ³É£¬¼õÇáÖÊÁ¿ | |
| B£® | ÅÄÉãÓ°ÊӾ緿Îݵ¹Ëú¾µÍ·£¬³£Ñ¡ÓÃÃܶȴóµÄ²ÄÁÏ×öµÀ¾ß£¬¸ü±ÆÕæÐÎÏó | |
| C£® | ÆøÏó¹¤×÷ÕßÀûÓÃÃܶÈСµÄÆøÌåÖÆÔì̽¿ÕÆøÇò£¬²É¼¯ÆøÏó×ÊÁÏ | |
| D£® | ʳƷ¹¤ÒµÖÐÎÞ·¨Í¨¹ý²âÁ¿Å£Ä̵ÄÃܶȼø±ðÅ£Ä̵ÄÓÅÁÓ |
| A£® | ×ó±ßµÄÈËËùʹÓõÄÇ˰ôÏ൱ÓÚÊ¡Á¦¸Ü¸Ë | |
| B£® | ´óľÁÏÏ·ÅÖÃСԲľÊÇΪÁ˼õÉÙĦ²ÁÁ¦ | |
| C£® | ͨ¹ý¸Ü¸ËÒÆ¶¯Ä¾ÁÏʱ¿ÉÒÔÊ¡¹¦ | |
| D£® | ̧Æð´óľÁϵÄÒ»¶ËÔòÁíÒ»¶Ë¶ÔµØÃæµÄѹÁ¦Ð¡ÓÚÖØÁ¦ |