ÌâÄ¿ÄÚÈÝ
6£®ÕÅÀÚͬѧÔںӱ߼ðµ½Ò»¸ö¾«ÃÀµÄСʯ¿é£¬Ïë´ÖÂÔÖªµÀСʯ¿éÃܶȣ¬ÓÚÊÇËû´ÓѧУ½èÀ´Ò»¼ÜÌìÆ½£¬Ö½±£¬ÔÙ½èÖúÓÚË®£¬¾ÍÇÉÃî¹À²âÁËСʯ¿éµÄÃܶȣ®ÇëÒ²ÓÃÕâЩÆ÷²ÄÉè¼Æ¹À²âСʯ¿éÃܶȵÄʵÑé·½°¸£¬²¢µÃ³öºÍʵÑé·½°¸Ò»ÖµÄÃܶȱí´ïʽ£®¢ÙÓÃÌìÆ½²â³öʯ¿éµÄÖÊÁ¿m£»
¢Ú½«Ö½±×°ÂúË®ºó²â³öË®ºÍ±µÄÖÊÁ¿m1£»
¢Û½«Ö½±ÖеÄË®µ¹³ö£¬°Ñʯ¿é·ÅÈë±ÖУ¬¼ÓÂúË®£¬ÓÃÌìÆ½²â³öË®¡¢±ºÍʯ¿éµÄ×ÜÖÊÁ¿m2
ʯ¿éÃܶȵıí´ïʽ£º¦Ñʯ=$\frac{m}{m+{m}_{1}-{m}_{2}}$¦ÑË®£®
·ÖÎö ¸ù¾ÝÌâÄ¿ÌṩµÄ²½Ö裺ÓÃÌìÆ½²â³öʯ¿éµÄÖÊÁ¿£¬½«Ö½±×°ÂúË®ºó²â³öË®ºÍ±µÄÖÊÁ¿£»µÚÈý²½ÖèÉè¼ÆÊ±£¬²âÁ¿Òç³öË®µÄÖÊÁ¿£¬¾Ý´ËÇóÒç³öË®µÄÌå»ý£¬¼´Ê¯¿éµÄÌå»ý£¬ÔÙÀûÓÃÃܶȹ«Ê½Çóʯ¿éµÄÃܶȣ®
½â´ð ½â£º
£¨1£©ÊµÑé²½Ö裺
¢ÙÓÃÌìÆ½²â³öʯ¿éµÄÖÊÁ¿m£»
¢Ú½«Ö½±×°ÂúË®ºó²â³öË®ºÍ±µÄÖÊÁ¿m1£»
¢Û½«Ö½±ÖеÄË®µ¹³ö£¬°Ñʯ¿é·ÅÈë±ÖУ¬¼ÓÂúË®£¬ÓÃÌìÆ½²â³öË®¡¢±ºÍʯ¿éµÄ×ÜÖÊÁ¿m2£»
£¨2£©¼ÆË㣺
ʯ¿é½þûˮÖÐÒç³öË®µÄÖÊÁ¿£º
mÒçË®=m+m1-m2£¬
ÓɦÑ=$\frac{m}{V}$µÃʯ¿éµÄÌå»ý£º
V=VÒçË®=$\frac{{m}_{ÒçË®}}{{¦Ñ}_{Ë®}}$=$\frac{m+{m}_{1}-{m}_{2}}{{¦Ñ}_{Ë®}}$£¬
ʯ¿éµÄÃܶȣº
¦Ñʯ=$\frac{m}{V}$=$\frac{m}{m+{m}_{1}-{m}_{2}}$¦ÑË®£®
¹Ê´ð°¸Îª£º°Ñʯ¿é·ÅÈë±ÖУ¬¼ÓÂúË®£¬ÓÃÌìÆ½²â³öË®¡¢±ºÍʯ¿éµÄ×ÜÖÊÁ¿m2£»¦Ñʯ=$\frac{m}{m+{m}_{1}-{m}_{2}}$¦ÑË®£®
µãÆÀ ±¾ÌâΪ¹ÌÌåÃܶȵIJâÁ¿ÊµÑ飬ÄѵãÔÚʯ¿éÌå»ýµÄ²âÁ¿£¬¼´µÚÈý²½ÖèµÄÉè¼Æ£¬Éè¼ÆË¼Â·£ºÀûÓÃÒç³öË®µÄÖÊÁ¿ÇóÒç³öË®µÄÌå»ý£¬¼´Ê¯¿éµÄÌå»ý£®
| A£® | ÑØÐ±ÃæÏòÏ | B£® | ´¹Ö±Ð±ÃæÏòÏ | C£® | ÊúÖ±ÏòÏ | D£® | ÒÔÉ϶¼ÕýÈ· |
| A£® | ¦¸¡¢C¡¢V | B£® | V¡¢A¡¢¦¸ | C£® | A¡¢K¦¸¡¢V | D£® | V¡¢mA¡¢¦¸ |