题目内容
6.如图1所示的新型电饭煲,其简化电路如图2-甲所示,R1和R2均为电热丝,S是自动控制开关,把电饭煲接入220V电路中煮米饭,电饭锅工作时的电流随时间变化的图象如图2-乙所示,则电热丝R2的阻值为73.3Ω(计算结果保留一位小数),这电饭锅在0-15min内把质量为1.1kg的米饭由20℃加热到100℃,则米饭吸收的热量为3.696×105J,电饭锅在这段时间内加热的效率是70%.[c米饭=4.2×103J/(kg•℃)]分析 (1)由电路图可知,开关S闭合时,电路为R2的简单电路,此时电路中的总电阻最小,电路中的电流最大,由图丙可知电路中的电流,根据欧姆定律求出R2的阻值;
(2)开关S断开时,R1与R2串联,此时电路中的总电阻最大,电路中的电流最小,由图丙可知电路中的电流;再由图象可知两种情况下的工作时间,根据W=UIt求出两种情况下电饭锅消耗的电能,两者之和即为0~15min内消耗的电能,根据Q吸=cm(t2-t1)求出米饭吸收的热量,根据η=$\frac{{Q}_{吸}}{W}$×100%求出电饭锅在这段时间内加热的效率.
解答 解:开关S闭合时,电路为R2的简单电路,此时电路中的总电阻最小,电路中的电流最大,
由图丙可知,电路中的电流I=3A,
由I=$\frac{U}{R}$可得,R2的阻值:
R2=$\frac{U}{I}$=$\frac{220V}{3A}$≈73.3Ω;
开关S断开时,R1与R2串联,此时电路中的总电阻最大,电路中的电流最小,
由图丙可知,电路中的电流I′=2A,
由图象可知,0~15min内I=3A时的工作时间t=10min=600s,I′=2A时的工作时间t′=5min=300s,
电饭锅在0~15min内消耗的电能:
W=UIt+UI′t′=220V×3A×600s+220V×2A×300s=5.28×105J,
米饭吸收的热量:
Q吸=cm(t2-t1)=4.2×103J/(kg•℃)×1.1kg×(100℃-20℃)=3.696×105J,
电饭锅在这段时间内加热的效率:
η=$\frac{{Q}_{吸}}{W}$×100%=$\frac{3.696×1{0}^{5}J}{5.28×1{0}^{5}J}$×100%=70%.
故答案为:73.3Ω;3.696×105J;70%.
点评 本题考查了欧姆定律、吸热公式、电功公式、效率公式的应用,关键是从图中读出有用的信息和判断出电路中电流与电路的对应关系.
(1)现有以下可供选择的实验步骤:
A.将金属块投入盛水量筒中,记下水和金属块的总体积,记为Va;
B.将金属块从量筒中取出,记下量筒中水的体积,记为Vb;
C.调节好天平,用天平称出从量筒中取出的金属块的质量记为ma;
D.调节好天平,用平天称出金属块的质量(尚未用量筒测体积)记为mb;
E.将量筒盛有适量的水,记下水的体积,记为Vc.
请选择必要的步骤,并按合理的顺序填写在下面的横线上( 要求误差较小)DEA.写出金属块密度的表达式$\frac{{m}_{b}}{{V}_{a}-{V}_{c}}$.
(2)根据图中所示结果,将下表填写完整.
| 金属块的 质量(g) | 金属块的 体积(cm3) | 金属块和水的总体积(cm3) | 量筒内水的体积(cm3) | 金属块的密度(g/cm3) |
| 68.6 | 10 | 40 | 30 | 6.86 |
| A. | 在位置a时动能最大 | B. | 在位置c时动能为零 | ||
| C. | 在位置b时重力势能最大 | D. | 在此过程中重力势能转化为动能 |