ÌâÄ¿ÄÚÈÝ
12£®£¨1£©ÔÚ¼×ͼÖУ¬¿ª¹ØS1¶Ï¿ªÊ±£¬ÊµÑéµç·´¦ÓÚµÍεµ£»
£¨2£©ÔÚÒÒͼÖУ¬ÊµÑéµç·´¦ÓÚ¸ßεµÊ±ÏûºÄµÄµç¹¦ÂÊΪ1.8W£»
£¨3£©Èç¹û¼×¡¢ÒÒͼÖÐʵÑéµç·µÄ¸ßεµºÍµÍεµµÄµç¹¦ÂÊ·Ö±ðÏàµÈ£¬ÔòÔÚ¼×ͼÖУ¬R1ºÍR2µÄµÈЧµç×èӦΪ30¦¸£»R2µÄ×èֵӦΪ20¦¸£®
·ÖÎö £¨1£©ÀûÓÃP=$\frac{{U}^{2}}{R}$¿ÉÒÔÅжϣ¬ÔÚµçѹһ¶¨Ê±£¬µç×èÔ½´ó£¬¹¦ÂÊԽС£¬¾Ý´Ë·ÖÎö½â´ð£»
£¨2£©¸ù¾Ý²¢ÁªµçÂ·ÌØµã£¬½áºÏ¹¦Âʹ«Ê½Çó³öÁ½¸öµç×èµÄ¹¦ÂÊ£¬ÔòÁ½ÕßµÄÖ®ºÍ¼´Îª×ܹ¦ÂÊ£»
£¨3£©ÀûÓÃP=$\frac{{U}^{2}}{R}$·Ö±ðÁгö¼×ÒÒÁ½Í¼¸ßεµºÍµÍεµµÄ¹¦ÂÊ£¬ÀûÓÃÆä·Ö±ðÏàµÈ¹ØÏµÇó³öR1ºÍR2£¬¼´¿É½â´ð£®
½â´ð ½â£º£¨1£©¸ù¾ÝP=$\frac{{U}^{2}}{R}$¿ÉÖªÔÚUÒ»¶¨Ê±£¬RÔ½´ó£¬¹¦ÂÊԽС£¬µçÈÈ̺´¦ÓÚµÍÎÂ״̬£¬¹ÊÓɼ×ͼ¿ÉÖª£¬Ö»ÓÐS1¶Ï¿ªÊ±£¬Á½µç×è´®Áª£¬µç·Öеç×è×î´ó£¬¹¦ÂÊ×îС£»
£¨2£©ÒòΪÒÒͼÁ½µç×è²¢Áª£¬µ±S2±ÕºÏʱ£¬µç·Öеç×è×îС£¬ÓÉP=$\frac{{U}^{2}}{R}$¿ÉÖªµç¹¦ÂÊ×î´ó£¬´¦ÓÚ¸ßΣ»
´ËʱµÄ¹¦ÂÊΪ£ºP=P3+P4=$\frac{{U}^{2}}{{R}_{3}}$+$\frac{{U}^{2}}{{R}_{4}}$=$\frac{£¨6V£©^{2}}{30¦¸}$+$\frac{£¨6V£©^{2}}{60¦¸}$=1.8W£»
£¨3£©Èç¹û¼×¡¢ÒÒͼÖÐʵÑéµç·µÄ¸ßεµºÍµÍεµµÄµç¹¦ÂÊ·Ö±ðÏàµÈÔòÓУº
$\frac{£¨6V£©^{2}}{{R}_{2}}$=1.8W
½âµÃ£ºR2=20¦¸£»
ÓÖµÍι¦ÂÊÏàµÈ£¬Ôò£º
$\frac{{U}^{2}}{{R}_{1}+{R}_{2}}$=$\frac{{U}^{2}}{{R}_{3}}$
¼´£º$\frac{£¨6V£©^{2}}{{R}_{1}+20¦¸}$=$\frac{£¨6V£©^{2}}{30¦¸}$
½âµÃ£ºR1=10¦¸
¹ÊÔÚ¼×ͼÖУ¬R1ºÍR2µÄ´®ÁªµÈЧµç×èӦΪ10¦¸+20¦¸=30¦¸£®
¹Ê´ð°¸Îª£º£¨1£©¶Ï¿ª£»£¨2£©1.8£»£¨3£©30£»20£®
µãÆÀ ´ËÌâÖ÷Òª¿¼²éѧÉú¶ÔÓÚ´®²¢Áªµç·Öеç×èÌØµãºÍµç¹¦ÂÊÌØµãµÄ¼ÆËãµÄÀí½âºÍÕÆÎÕ£®
| A£® | ÎüÆø³å³Ì | B£® | ѹËõ³å³Ì | C£® | ×ö¹¦³å³Ì | D£® | ÅÅÆø³å³Ì |
| A£® | ÊÖÖ¸ | B£® | ÇÙÏÒ | C£® | ¿ÕÆø | D£® | ľ |