题目内容
14.(1)小灯泡的电阻RL为多大?
(2)当开关S1闭合,S2断开时,小灯泡恰好能正常发光,则电源电压是多少?
(3)当开关S1断开,S2闭合,调节滑片使小灯泡实际功率为1.5W时,滑动变阻器消耗的功率是多少?
分析 (1)由灯泡的铭牌信息可知额定电压及额定功率,由公式R=$\frac{{U}^{2}}{P}$可求得灯泡的电阻;
(2)当开关S1闭合,S2断开时,R1与L串联,灯泡正常发光,由P=UI计算电路中电流,由串联电路特点和欧姆定律计算电源电压;
(3)当开关S1断开,S2闭合,R2与L串联,根据P=$\frac{{U}^{2}}{R}$计算此时灯泡两端电压,由欧姆定律计算电路中电流,由P=UI计算滑动变阻器消耗的功率.
解答 解:
(1)由P=$\frac{{U}^{2}}{R}$可得灯泡的电阻:
RL=$\frac{{{U}_{额}}^{2}}{{P}_{额}}$=$\frac{({6V)}^{2}}{6W}$=6Ω;
(2)由图可知,当开关S1闭合,S2断开时,R1与L串联,灯泡正常发光,
由P=UI可得电路中电流:
I=I额=$\frac{{P}_{额}}{{U}_{额}}$=$\frac{6W}{6V}$=1A,
由串联电路特点和欧姆定律可得电源电压:
U=I(RL+R1)=1A×(6Ω+125Ω)=131V;
(3)由图可知,当开关S1断开,S2闭合,R2与L串联,
由P=$\frac{{U}^{2}}{R}$可得此时灯泡两端电压:
UL=$\sqrt{{P}_{L}{R}_{L}}$=$\sqrt{1.5W×6Ω}$=3V,
此时电路中电流:
I′=I2=IL=$\frac{{U}_{L}}{{R}_{L}}$=$\frac{3V}{6Ω}$=0.5A,
所以滑动变阻器消耗的功率:
P2=U2I2=(U-UL)I2=(131V-3V)×0.5A=64W.
答:(1)小灯泡的电阻RL为6Ω;
(2)电源电压是131V;
(3)滑动变阻器消耗的功率是64W.
点评 本题考查串联电路特点和欧姆定律公式和电功率公式的应用,正确分析开关在不同状态下电路结构是解题的关键.
| A. | 将滑片P向a端移动 | |
| B. | 将滑片P向b端移动 | |
| C. | 保持滑片P的位置不动 | |
| D. | 取下滑动变阻器,将小灯泡L2直接接在电源两端 |
| A. | A导体的电阻小于B导体的电阻 | |
| B. | 当导体A、B并联时,通过它们的电流之比是1:2 | |
| C. | 当导体A、B串联时,它们相同时间内的电功之比是1:2 | |
| D. | A导体两端电压为3V时,A导体的电功率为0.9W |
| A. | 温度低 | B. | 内能小 | C. | 比热容大 | D. | 热量高 |
| A. | 普通课桌的高度为100dm | B. | 成年人正常步行的速度约为1.2m/s | ||
| C. | 以为普通中学生的质量约为500kg | D. | 人拿两个鸡蛋的力大约是10N |