题目内容

10.如图所示,用最大承受拉力为500N的绳子来提升重为1400N的物体C所选用的滑轮每个重为100N,要求人站在地面上.能匀速提起重物.
(1)画出滑轮组组装示意图;
(2)若不计绳重及摩擦,此时提升重物的实际拉力多大?此时的机械效率多大?
(3)用这组滑轮提升该重物时,若不限定人拉力的方向,它的机械效率最大为何值?

分析 (1)滑轮组的省力特点:滑轮组由几段绳子承担物重,提起绳子的力便是物重的几分之一,根据物体的总重及绳子的最大拉力确定绳子段数;
(2)根据F=$\frac{1}{n}$(G+G)计算实际拉力的大小;由η=$\frac{{W}_{有}}{{W}_{总}}$=$\frac{Gh}{Fs}$=$\frac{G}{nF}$计算机械效率;
(3)用同一个滑轮组提升重物,提升的重物越重,机械效率越高;知道绳子能承受的最大拉力,求出滑轮组能提升的最大物重,再利用效率公式求滑轮组的最大机械效率.

解答 解:
(1)由题意知,n=$\frac{{G}_{物}+2{G}_{滑}}{F}$=$\frac{1400N+2×100N}{500N}$≈4,
则滑轮组最少应由4段绳子承担物重,人站在地面上,所以拉力方向向下,如图所示:

(2)不计绳重及摩擦,此时提升重物的实际拉力:
F=$\frac{1}{4}$×(G+G)=$\frac{1}{4}$×(1400N+2×100N)=400N;
此时的机械效率:
η=$\frac{{W}_{有}}{{W}_{总}}$×100%=$\frac{Gh}{Fs}$×100%=$\frac{G}{nF}$×100%=$\frac{1400N}{4×1600N}$×100%=87.5%;
(3)不限定人拉力方向,动滑轮上绳子段数越多,提起物体越重,其机械效率越高,
当滑轮组自由端向上拉时,动滑轮上绳子段数最多,能提起物体最重,如图所示:

F=$\frac{1}{5}$×(G+G),绳子能承受的最大拉力为500N,
所以能提升的最大物重:G=5F-G=5×500N-2×100N=2300N,
所以滑轮组的机械效率最大:η′=$\frac{{G}_{大}}{nF′}$×100%=$\frac{2300N}{5×500N}$×100%=92%.
答:(1)滑轮组如上图;
(2)提升重物的实际拉力为400N,此时的机械效率为87.5%;
(3)用这组滑轮提升该重物时,若不限定人拉力的方向,它的机械效率最大为92%.

点评 本题考查了滑轮组的绕法、机械效率的计算,在绳重及摩擦不计时,灵活运用公式F=$\frac{1}{n}$(G+G)是本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网