题目内容

9.如图,用甲、乙两种方式搬起质量为10kg的长方形箱子(质量分布均匀),则(  ) 
A.用甲图所示的方式更省力
B.用乙图所示的方式更省力
C.人体肌肉需要承受的力一定小于98N
D.人体肌肉需要承受的力一定小于10kg

分析 (1)把箱子看做一个杠杆,抬起一端,则另一端与人的身体接触的点为支点.由于箱子质量均匀,所以,其重力的作用点在其中心上,此时动力F克服的是箱子的重力,在此基础上,利用杠杆的平衡条件,即可确定F1与F2的大小关系,得出哪种方式更省力.据此对A选项做出判断;
(2)首先确定杠杆的支点、动力、阻力及对应的动力臂和阻力臂,根据杠杆的平衡条件F1L1=F2L2,并结合力臂的概念进行分析.据此对C选项做出判断;
(3)根据力的单位对D选项作出判断.

解答 解:AB、两次搬起箱子时的情况如图(1)所示,

在上述两种情况下,阻力为箱子的重力,对于形状规则质地均匀的物体,其重心都在其几何中心上.
手的前臂是一根以肘关节处为支点的杠杆;由图可知,阻力G和动力臂L1不变,箱子横放时阻力臂变短,即L2变小;根据杠杆的平衡条件可知,动力变小,所以用乙图所示的方式更省力.故A错误,B正确;
C、箱子的重力为G=mg=10kg×9.8N/kg=98N;
由图(2)知,肱二头肌的拉力为动力,物体对手的压力为阻力,支点在肘关节处,所以动力臂小于阻力臂,即L1<L2;根据杠杆平衡条件F1L1=F2L2可知,F1>F2,即肱二头肌收缩所承受的力一定大于98N.故C错误;
D、力的单位是N,不是kg,故D错误.
故选B.

点评 此题考查了杠杆平衡条件的应用,研究物体的平衡问题,利用画图的方法,从图得出两种情况下动力臂和阻力臂的变化是本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网