【题目】如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A,C分别在x轴、y轴的正半轴上,抛物线y=-x2+bx+c经过点B,C两点,点D为抛物线的顶点,连接AC,BD,CD.
(1)求此抛物线的解析式;
(2)求此抛物线顶点D的坐标和四边形ABDC的面积.
【题目】如图,已知△ABC中,AB=AC,点D在底边BC上,添加下列条件后,仍无法判定△ABD≌△ACD的是( )
A. BD=CD B. ∠BAD=∠CAD C. ∠B=∠C D. ∠ADB=∠ADC
【题目】阅读下面材料,并解决问题:
如图等边内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求的度数.为了解决本题,我们可以将绕顶点A旋转到处,此时≌,这样就可以利用旋转变换,将三条线段PA、PB、PC转化到一个三角形中,从而求出______;
基本运用
请你利用第题的解答思想方法,解答下面问题:已知如图,中,,,E、F为BC上的点且,求证:;
能力提升
如图,在中,,,,点O为内一点,连接AO,BO,CO,且,求的值.
【题目】杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线的一部分,如图
(1)求演员弹跳离地面的最大高度;
(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.
【题目】已知方程组的解x为非正数,y为负数.
(1)求a的取值范围;
(2)化简∣a-3∣+∣a+2∣;
(3).教科书中这样写道:“我们把多项式a2+2ab+b2及a2-2ab+b2叫做完全平方式.”如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值、最小值等.
例如:分解因式x2+2x-3=(x2+2x+1)-4=(x+1)2-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1);
根据阅读材料用配方法解决下列问题:
①分解因式:m2-4m-5=
②当a,b为何值时,多项式a2+b2-4a+6b+13=0.
③当a,b为何值时,多项式a2-2ab+2b2-2a-4b+10=0.
【题目】如图,在平面直角坐标系中,一次函数 y kx b 的图象与 x 轴交点为 A3, 0,与 y 轴交点为 B ,且与正比例函数的图象交于点C(m,4).
(1)求点C 的坐标;
(2)求一次函数 y kx b 的表达式;
(3)若点 P 是 y 轴上一点,且BPC 的面积为 6,请直接写出点 P 的坐标.
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正确的结论是________.(写出正确命题的序号)
【题目】如图,已知点A,B的坐标分别为(4,0),(3,2).
(1)画出△AOB关于原点O对称的图形△COD;
(2)将△AOB绕点O按逆时针方向旋转90°得到△EOF,画出△EOF;
(3)点D的坐标是 ,点F的坐标是 ,此图中线段BF和DF的关系是 .
【题目】(1)如图,△AEC绕A点顺时针旋转60°得△APB,∠PAC=20°,求∠BAE.
(2)解不等式组:
【题目】如图是抛物线形拱桥,当拱顶高离水面2m时,水面宽4m,水面下降2.5m,水面宽度增加( )
A. 1 m B. 2 m C. 3 m D. 6 m