【题目】为了完成池百(河池至百色)高速公路能在2018年底通车任务,各项工程都加快了施工力度.其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍:
(1)求甲乙两队单独完成这项工程各需几个月?
(2)若甲队每月的施工费用为100万元,乙队每月的施工费用比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程.在完成这项工程中,甲队施工时间是乙队施工时间的两倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按时取整数)
【题目】如图,BE、CF是△ABC的高且相交于点P,AQ∥BC交CF延长线于点Q,若有BP=AC,CQ=AB,线段AP与AQ的关系如何?说明理由。
【题目】如图,AC是矩形ABCD的一条对角线,沿AC折叠使点B落在点E处。
(1)求证△AEF≌△CDF.
(2)若AB=4,BC=8,求△AEF的周长.
【题目】对于未知数为 x,y 的二元一次方程组,如果方程组的解 x,y 满足 ,我们就说方程组的解 x 与 y 具有“邻好关系”.
(1) 方程组的解x与y是否具有“邻好关系”? 说明你的理由;
(2) 若方程组的解x与y具有“邻好关系”,求m的值;
(3) 未知数为x,y的方程组,其中a与x,y都是正整数,该方程组的解x与y是否具有“邻好关系”? 如果具有,请求出a的值及方程组的解;如果不具有,请说明理由.
【题目】如图,在平面直角坐标系中,四边形ABCD是长方形, ∠A=∠B=∠C=∠D=90°,AB∥CD,AB=CD=4,AD=BC=6,点A的坐标为(3,2).动点P的运动速度为每秒a个单位长度,动点Q的运动速度为每秒b个单位长度,且.设运动时间为t,动点P、Q相遇则停止运动.
(1) 求a,b的值;
(2) 动点P,Q同时从点A出发,点P沿长方形ABCD的边界逆时针方向运动,点Q沿长方形ABCD的边界顺时针方向运动,当t为何值时P、Q两点相遇?求出相遇时P、Q所在位置的坐标;
(3) 动点P从点A出发,同时动点Q从点D出发:
①若点P、Q均沿长方形ABCD的边界顺时针方向运动,t为何值时,P、Q两点相遇?求出相遇时P、Q所在位置的坐标;
②若点P、Q均沿长方形ABCD的边界逆时针方向运动,t为何值时,P、Q两点相遇?求出相遇时P、Q所在位置的坐标.
【题目】为推广阳光体育“大课间”活动,我市某中学决定在学生中开设A:实心球.B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:
(1)在这项调查中,共调查了多少名学生?
(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整;
(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.
【题目】在平面直角坐标系中,一次函数(a≠0)的图象与反比例函数的图象交于第二、第四象限内的A、B两点,与轴交于点C,过点A作AH⊥轴,垂足为点H,OH=3,tan∠AOH=,点B的坐标为(,-2).
(1)求该反比例函数和一次函数的解析式;
(2)求△AHO的周长.
【题目】如图所示的平面直角坐标系中,已知A(0,-3),B(4,1),C(-5,3)
(1) 求三角形ABC的面积;
(2) 点M是平面直角坐标系第一象限内的一动点,点M的纵坐标为3,三角形BCM的面积为6,求点M的坐标;
(3) 记BC与y轴的交点为D,求点D的坐标(写出具体解答过程).
【题目】(11·湖州)(本小题10分)
如图,已知E、F分别是□ABCD的边BC、AD上的点,且BE=DF。
⑴求证:四边形AECF是平行四边形;
⑵若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长。
【题目】如图,在一张矩形纸片ABCD中,AD=4cm,点E,F分别是CD和AB的中点,现将这张纸片折叠,使点B落在EF上的点G处,折痕为AH,若HG延长线恰好经过点D,则CD的长为_________.