【题目】(问题提出):分解因式:(12x2+2xy3x3y;(2a2b2+4a4b

(问题探究):某数学“探究学习”小组对以上因式分解题目进行了如下探究:

探究1:分解因式:(12x2+2xy3x3y

该多项式不能直接使用提取公因式法,公式法进行因式分解.于是仔细观察多项式的特点.甲发现该多项式前两项有公因式2x,后两项有公因式﹣3,分别把它们提出来,剩下的是相同因式(x+y),可以继续用提公因式法分解.

解:2x2+2xy3x3y=(2x2+2xy)﹣(3x+3y)=2xx+y)﹣3x+y)=(x+y)(2x3

另:乙发现该多项式的第二项和第四项含有公因式y,第一项和第三项含有公因式x,把yx提出来,剩下的是相同因式(2x3),可以继续用提公因式法分解.

解:2x2+2xy3x3y=(2x23x)+(2xy3y)=x2x3)+y2x3)=(2x3)(x+y

探究2:分解因式:(2a2b2+4a4b

该多项式亦不能直接使用提取公因式法,公式法进行因式分解,于是若将此题按探究1的方法分组,将含有a的项分在一组即a2+4aaa+4),含有b的项一组即﹣b24b=﹣bb+4),但发现aa+4)与﹣bb+4)再没有公因式可提,无法再分解下去.于是再仔细观察发现,若先将a2b2看作一组应用平方差公式,其余两项看作一组,提出公因式4,则可继续再提出因式,从而达到分解因式的目的.

解:a2b2+4a4b=(a2b2)+(4a4b)=(a+b)(ab)+4ab)=(ab)(4+a+b

(方法总结):对不能直接使用提取公因式法,公式法进行分解因式的多项式,我们可考虑把被分解的多项式分成若干组,分别按“基本方法”即提取公因式法和运用公式法进行分解,然后,综合起来,再从总体上按“基本方法”继续进行分解,直到分解出最后结果.这种分解因式的方法叫做分组分解法.

分组分解法并不是一种独立的因式分解的方法,而是通过对多项式进行适当的分组,把多项式转化为可以应用“基本方法”分解的结构形式,使之具有公因式,或者符合公式的特点等,从而达到可以利用“基本方法”进行分解因式的目的.

(学以致用):尝试运用分组分解法解答下列问题:

1)分解因式:

2)分解因式:

(拓展提升):

3)尝试运用以上思路分解因式:

 0  354486  354494  354500  354504  354510  354512  354516  354522  354524  354530  354536  354540  354542  354546  354552  354554  354560  354564  354566  354570  354572  354576  354578  354580  354581  354582  354584  354585  354586  354588  354590  354594  354596  354600  354602  354606  354612  354614  354620  354624  354626  354630  354636  354642  354644  354650  354654  354656  354662  354666  354672  354680  366461 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网