【题目】已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.
(1)若点P到点A、点B的距离相等,求点P对应的数;
(2)数轴上是否存在点P,使点P到点A、点B的距离之和为8?若存在,请求出x的值;若不存在,说明理由;
(3)现在点A、点B分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,点P以6个单位长度/秒的速度同时从O点向左运动.当点A与点B之间的距离为3个单位长度时,求点P所对应的数是多少?
【题目】如图,四边形ABCD是⊙O的内接四边形,点F 是CD延长线上的一点,且AD平分∠BDF,AE⊥CD于点E.
⑴ 求证:AB=AC.
⑵ 若BD=11,DE=2,求CD的长.
【题目】如图,抛物线与轴交于点A和点B(3,0),与轴交于点C(0,3).
(1)求抛物线的解析式;
(2)若点M是抛物线在轴下方上的动点,过点M作MN//轴交直线BC于点N,求线段MN的最大值;
(3)在(2)的条件下,当MN取最大值时,在抛物线的对称轴上是否存在点P,使△PBN是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.
【题目】“十一”黄金周期间,朱老师织织朋友去某影视城旅游.现有两家旅行社.报价都为元.且提供服务完全相同.但针对组团游的游客,甲旅行社表示,每人都按八折收费; 乙旅行社表示,若人数不超过人,每人都按八折收费.若超过人,則超出部分按七五折收费,假设组团参加甲乙两家旅行社旅游的人数均为人.
(1)请分别写出甲,乙两家旅行社收取组团游的总费用(元)与(人)之间的函数关系式.
(2)如果朱老师和朋友一共有人去旅游.那你计算下,在甲、乙两家旅行社中,朱老师应选择哪家?
【题目】如图,在菱形ABCD中,∠A=60°,AD=8,F是AB的中点,过点F作FE⊥AD,垂足为E,将△AEF沿点A到点B的方向平移,得到△A′E′F′.
(1)求EF的长;
(2)设P,P′分别是EF,E′F′的中点,当点A′与点B重合时,求证四边形PP′CD是平行四边形,并求出四边形PP′CD的面积.
【题目】如图,AB为⊙O的直径,点E在⊙O上,C为的中点,过点C作直线CD⊥AE于D,连接AC,BC.
(1)试判断直线CD与⊙O的位置关系,并说明理由;
(2)若AD=2,AC=,求AB的长.
【题目】如图,在由边长为1的小正方形组成的网格图中有一个格点三角形ABC.(注:顶点均在网格线交点处的三角形称为格点三角形)
(1)请直接写出sin∠ABC的值: ;
(2)请在图中画格点三角形DEF,使得△DEF∽△ABC,且相似比为2∶1;
(3)请在图中确定格点M,使得△BCM的面积为6.如果符合题意的格点M不止一个,请分别用M1、M2、M3…表示.
【题目】如图,在矩形ABCD中,动点P从点A开始沿A→B→C→D的路径匀速运动到点D为止,在这个过程中,下列图象可以大致表示△APD的面积S随点P的运动时间t的变化关系的是( )
A. B. C. D.
【题目】如图,矩形OBCD中,OB=5,OD=3,以O为原点建立平面直角坐标系,点B,点D分别在x轴,y轴上,点C在第一象限内,若平面内有一动点P,且满足S△POB=S矩形OBCD,问:
(1)当点P在矩形的对角线OC上,求点P的坐标;
(2)当点P到O,B两点的距离之和PO+PB取最小值时,求点P的坐标.
【题目】如图,在数轴上,点A表示数1,现将点A沿数轴做如下移动:第一次将点A向左移动3个单位长度到达点,第2次将点向右平移6个单位长度到达点,第3次将点向左移动9个单位长度到达点…,按照这种规律移动下去,则第2017次移动到点时,在数轴上对应的实数是_______.