【题目】如图 ,∠E=∠F=90°,∠B=∠C,AC=AB,给出下列结论:① ∠1=∠2;② BE=CF;③ △ACN≌△ABM;④ CD=DN,其中正确的结论有( )个
A.1B.2C.3D.4
【题目】在平面直角坐标系xOy中,过⊙C上一点P作⊙C的切线l.当入射光线照射在点P处时,产生反射,且满足:反射光线与切线l的夹角和入射光线与切线l的夹角相等,点P称为反射点.规定:光线不能“穿过”⊙C,即当入射光线在⊙C外时,只在圆外进行反射;当入射光线在⊙C内时,只在圆内进行反射.特别地,圆的切线不能作为入射光线和反射光线.光线在⊙C外反射的示意图如图1所示,其中∠1=∠2.
(1)自⊙C内一点出发的入射光线经⊙C第一次反射后的示意图如图2所示,P1是第1个反射点.请在图2中作出光线经⊙C第二次反射后的反射光线和反射点P3;
(2)当⊙O的半径为1时,如图3:
①第一象限内的一条入射光线平行于y轴,且自⊙O的外部照射在圆上点P处,此光线经⊙O反射后,反射光线与x轴平行,则反射光线与切线l的夹角为___________°;
②自点M(0,1)出发的入射光线,在⊙O内顺时针方向不断地反射.若第1个反射点是P1,第二个反射点是P2,以此类推,第8个反射点是P8恰好与点M重合,则第1个反射点P1的坐标为___________;
(3)如图4,点M的坐标为(0,2),⊙M的半径为1.第一象限内自点O出发的入射光线经⊙M反射后,反射光线与坐标轴无公共点,求反射点P的纵坐标的取值范围.
【题目】某科研小组在网上获取了声音在空气中传播的速度y与空气温度x关系的一些数据(如下表):
下列说法错误的是( )
A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快
C.当空气温度为20℃时,声音5s可以传播1740mD.温度每升高10℃,声速提高6m/s.
【题目】在平面直角坐标系xOy中,反比例函数的图象经过点A(1,4),B(m,n).
(1)求反比例函数的解析式;
(2)若二次函数的图象经过点B,求代数式的值;
(3)若反比例函数的图象与二次函数的图象只有一个交点,且该交点在直线y=x的下方,结合函数图象,求a的取值范围.
【题目】阅读下列材料:
实验数据显示,一般成人喝250毫升低度白酒后,其血液中酒精含量(毫克/百毫升)随时间的增加逐步增高达到峰值,之后血液中酒精含量随时间的增加逐渐降低.
小带根据相关数据和学习函数的经验,对血液中酒精含量随时间变化的规律进行了探究,发现血液中酒精含量y是时间x的函数,其中y表示血液中酒精含量(毫克/百毫升),x表示饮酒后的时间(小时).
下表记录了6小时内11个时间点血液中酒精含量y(毫克/百毫升)随饮酒后的时间x(小时)(x>0)的变化情况.
下面是小带的探究过程,请补充完整:
(1)如图,在平面直角坐标系xOy中,以上表中各对数值为坐标描点,图中已给出部分点,请你描出剩余的点,画出血液中酒精含量y随时间x变化的函数图象;
(2)观察表中数据及图象可发现此函数图象在直线两侧可以用不同的函数表达式表示,请你任选其中一部分写出表达式;
(3)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:30在家喝完250毫升低度白酒,第二天早上7:00能否驾车去上班?请说明理由.
【题目】如图,在平面直角坐标系xoy中,函数(x<0)的图象与直线y=x+2交于点A(-3,m).
(1)求k,m的值;
(2)已知点P(a,b)是直线y=x上,位于第三象限的点,过点P作平行于x轴的直线,交直线y=x+2于点M,过点P作平行于y轴的直线,交函数(x<0)的图象于点N.
①当a=-1时,判断线段PM与PN的数量关系,并说明理由;
②若PN≥PM结合函数的图象,直接写出b的取值范围.
【题目】如图,ABCD的对角线AC,BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连结OE.下列结论:
①∠CAD=30°;②SABCD=AB·AC;③OB=AB;④OE=BC,成立的结论有______.(填序号)
【题目】阅读理解
如图 a,在△ABC 中,D 是 BC 的中点.如果用 SABC 表示△ABC 的面积,则由等底等高的三角形的面积相等,可得.同理,如图 b,在 ABC 中,D、E 是 BC 的三等分点,可得
结论应用
已知△ABC 的面积为 42,请利用上面的结论解决下列问题:
(1)如图 1,若 D、E 分别是 AB、AC 的中点,CD 与 BE交于点 F,则△DBF 的面积为 ;
类比推广
(2)如图 2,若 D、E 是 AB 的三等分点,F、G 是 AC 的 三等分点,CD 分别交 BF、BG 于 M、N,CE 分别交 BF、BG 于 P、Q,求△BEP 的面积;
(3)如图2,问题(2)中的条件不变,求四边形EPMD的面积.
【题目】已知:如图,六边形 ABCDEF 中,∠A+∠B+∠C=∠D+∠E+∠F,猜想可 得六边形 ABCDEF 中必有两条边是平行的.
(1)根据图形写出你的猜想: ∥ ;
(2)请证明你在(1)中写出的猜想.
【题目】在一次活动中,主办方共准备了3600盆甲种花和2900盆乙种花,计划用甲、乙两种花搭造出A、B两种园艺造型共50个,搭造要求的花盆数如下表所示:
请问符合要求的搭造方案有几种?请写出具体的方案。