【题目】已知AB∥CD.
(1)如图①,若∠ABE=30°,∠BEC=148°,求∠ECD的度数;
(2)如图②,若CF∥EB,CF平分∠ECD,试探究∠ECD与∠ABE之间的数量关系,并证明.
【题目】在等腰△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.
(1)如图1,当点D在线段BC上,如果∠BAC=90°,求∠BCE的度数;
(2)如图2,当点D在线段BC上,如果∠BAC=60°,则∠BCE的度数;
(3)设∠BAC=α,∠BCE=β,如图3,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;
【题目】在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是( )
A. B. C. D.
【题目】已知点A(a,0)和B(0,b)满足(a-4)2+|b-6|=0,分别过点A、B作x轴、y轴的垂线交于点C,点P从原点出发,以每秒2个单位长度的速度沿着O-B-C-A-O的路线移动
(1)写出A、B、C三点的坐标;
(2)当点P移动了6秒时,直接写出点P的坐标;
(3)连结(2)中B、P两点,将线段BP向下平移h个单位(h>0),得到BP,若BP将四边形OACB的面积分成相等的两部分,求h的值.
【题目】阅读下列材料并解决问题
进位制是一种记数方式,可以用有限的数字符号代表所有的数值,使用数字符号的数目称为基数,基数为n,即可称n进制。现在最常用的是十进制,通常使用10个阿拉伯数字0~9进行记数,特点是逢十进一。
对于任意一个用进制表示的数,通常使用n个阿拉伯数字进行记数,特点是逢n进一。我们可以通过以下方式把它转化为十进制:
例如:五进制数,记作: ,
七进制数,记作:
(1)请将以下两个数转化为十进制: ____________, ____________ ;
(2)若一个正数可以用七进制表示为,也可以用五进制表示为,请求出这个数并用十进制表示。
【题目】如图,点E是正方形ABCD的边BC上一点,连接DE,将DE绕着点E逆时针旋转90°,得到EG,过点G作GF⊥CB,垂足为F,GH⊥AB,垂足为H,连接DG,交AB于I.
(1)求证:四边形BFGH是正方形;
(2)求证:ED平分∠CEI;
(3)连接IE,若正方形ABCD的边长为3,则△BEI的周长为 .
【题目】如图,等腰△ABC中,AB=AC=,BC=4,点B在y轴上,BC∥x轴,反比例函数(x>0)的图像经过点A,交BC于点D.
(1)若OB=3,求k的值;
(2)连接CO,若AB=BD,求四边形ABOC的周长.
【题目】如图,已知∠A=∠AGE,∠D=∠DGC
(1)求证:AB∥CD;
(2)若∠1+∠2=180°,求证:∠BEC+∠B=180°;
(3)在(2)的基础上,若∠BEC=2∠B+30°,求∠C的度数.
【题目】在平面直角坐标系中,已知点P的坐标为(2a+6,a-3)
(1)当点P的纵坐标为-4,求a的值;
(2)若点P在y轴上,求点P的坐标;
(3)若点P在第四象限,求a的取值范围.
【题目】东营市某中学校团委开展“关爱残疾儿童”爱心捐书活动,全校师生踊跃捐赠各类书籍共3000本.为了了解各类书籍的分布情况,从中随机抽取了部分书籍分四类进行统计:A.艺术类;B.文学类;C.科普类;D.其他,并将统计结果绘制成如图所示的两幅不完整的统计图.
(1)这次统计共抽取_____本书籍,扇形统计图中的m=______,∠α的度数是_____
(2)请将条形统计图补充完整;
(3)估计全校师生共捐赠了多少本文学类书籍.