【题目】已知:如图直线y=x+2与抛物线y=ax2交于A.B两点,点B的坐标(3,m),直线AB交y轴于点C.
(1)求a,m的值;
(2)点P在对称轴右侧的抛物线上,设P点横坐标为t,△PAB的面积为s,求s与t的函数关系式;
(3)在(2)的条件下,在x轴上有一点Q,当以B.C.P.Q为顶点的四边形是平行四边形时,求点Q的坐标.
【题目】下列命题:(1)如果 ,那么点 是线段 的中点;(2)相等的两个角是对顶角;(3)直角三角形的两个锐角互余;(4)同位角相等;(5)两点之间,直线最短.其中真命题的个数有( )
A.1 个B.2 个C.3 个D.4 个
【题目】如图,点 在同一直线上, , ,再添加一个条件仍不能证明 的是( )
A.B. C.D.
【题目】图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时 间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是( )
A. 体育场离张强家2.5千米
B. 张强在体育场锻炼了15分钟
C. 体育场离早餐店1.千米
D. 张强从早餐店回家的平均速度是3千米/小时
【题目】下列命题中,是真命题的是( )
A. 长分别为32,42,52的线段组成的三角形是直角三角形
B. 连接对角线垂直的四边形各边中点所得的四边形是矩形
C. 一组对边平行且另一组对边相等的四边形是平行四边形
D. 对角线垂直且相等的四边形是正方形
【题目】如图,数轴上、两点对应的有理数分別为和,点和点分别同时从点和点出发,以每秒个单位长度,每秒个单位长度的速度向数轴正方向运动,设运动时间为秒.
(1)当时,则、两点对应的有理数分别是______;_______;
(2)点是数轴上点左侧一点,其对应的数是,且,求的值;
(3)在点和点出发的同时,点以每秒个单位长度的速度从点出发,开始向左运动,遇到点后立即返回向右运动,遇到点后立即返回向左运动,与点相遇后再立即返回,如此往返,直到、两点相遇时,点停止运动,求点运动的路程一共是多少个单位长度?点停止的位置所对应的数是多少?
【题目】(1)如图,在平面直角坐标系中,四边形OBCD是正方形,且D(0,2),点E是线段OB延长线上一点,M是线段OB上一动点(不包括点O、B),作MN⊥DM,垂足为M,且MN=DM.设OM=a,请你利用基本活动经验直接写出点N的坐标______(用含a的代数式表示);
(2)如果(1)的条件去掉“且MN=DM”,加上“交∠CBE的平分线与点N”,如图,求证:MD=MN.如何突破这种定势,获得问题的解决,请你写出你的证明过程.
(3)在(2)的条件下,如图,请你继续探索:连接DN交BC于点F,连接FM,下列两个结论:①FM的长度不变;②MN平分∠FMB,请你指出正确的结论,并给出证明.
【题目】某学校计划组织师生参加哈尔滨冰雪节,感受冰雪艺术的魅力.出租公司现有甲、乙两种型号的客车可供租用,且每辆乙型客车的租金比每辆甲型客车少60元.若该校租用3辆甲种客车,4辆乙种客车,则需付租金1720元.
(1)该出租公司每辆甲、乙两型客车的租金各为多少元?
(2)若学校计划租用6辆客车,租车的总租金不超过1560元,那么最多租用甲型客车多少辆?
【题目】如图,在平面直角坐标系中,点O为坐标原点,正方形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(2,2),反比例函数(x>0,k≠0)的图象经过线段BC的中点D.
(1)求k的值;
(2)若点P(x,y)在该反比例函数的图象上运动(不与点D重合),过点P作PR⊥y轴于点R,作PQ⊥BC所在直线于点Q,记四边形CQPR的面积为S,求S关于x的解析式并写出x的取值范围.
【题目】如图,已知O为直线AB上一点,过点O向直线AB上方引三条射线OC、OD、OE,且OC平分∠AOD,∠2=3∠1.
(1)若∠1=18°,求∠COE的度数;
(2)若∠COE=70°,求∠2的度数.