【题目】如图,每个小正方形的边长都为1.四边形ABCD每个顶点分别都在格点上,请按要求完成下列各题:
(1)请在空白图中画出一个三角形,使其周长为,所画图形中各顶点必须与网格中的小正方形的顶点重合。
(2) 求四边形ABCD的面积 。
(3)∠BCD是直角吗 ?
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=BC,点M在AC边上,且AM=2,MC=6,动点P在AB边上,连接PC,PM,则PC+PM的最小值是 .
【题目】如图,已知双曲线 经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为v .
【题目】如图
(1)若∠2=∠3,则 ∥ ,理由是 .
(2)若∠3=∠4,则 ∥ ,理由是 .
(3)若m∥n,则∠1与∠4的关系是 ,理由是 .
(4)若∠1+∠2=180°,则 ∥ ,理由是 .
【题目】若二次函数y=ax2+bx+c(a<0)的图象如图所示,且关于x的方程ax2+bx+c=k有两个不相等的实根,则常数k的取值范围是( )A.0<k<4B.﹣3<k<1C.k<﹣3或k>1D.k<4
【题目】“十一”黄金周期间,欢欢一家随旅游团到某风景区旅游,集体门票的收费标准是: 人以内(含 人),每人元;超过人的,超过的部分每人元.
()写出应收门票费(元)与游览人数(人)(其中)之间的关系式.
()利用()中的关系式计算:若欢欢一家所在的旅游团共人,那么该旅游团购门票共花了多少钱?
【题目】如图,已知△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则BC的长为( )A.B.6C.D.
【题目】如图,G是正方形形ABCD的边BC上一点,DE、BF分别垂直AG于点E、F,则图中与△ABF相似的三角形有( )A.1个B.2个C.3个D.4个
【题目】(1)如图,给出了过直线外一点作已知直线的平行线的方法,其依据是 .
(2)如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,则BE与DF有何位置关系?试说明理由.
【题目】已知直线AB和CD交于点O,∠AOC的度数为x,∠BOE=90°,OF平分∠AOD.
(1)当x=19°48′,求∠EOC与∠FOD的度数.
(2)当x=60°,射线OE、OF分别以10°/s,4°/s的速度同时绕点O顺时针转动,求当射线OE与射线OF重合时至少需要多少时间?
(3)当x=60°,射线OE以10°/s的速度绕点O顺时针转动,同时射线OF也以4°/s的速度绕点O逆时针转动,当射线OE转动一周时射线OF也停止转动.射线OE在转动一周的过程中当∠EOF=90°时,求射线OE转动的时间.