【题目】如图所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD与CE交于点F,且AD=CD.
(1)求证:△ABD≌△CFD;
(2)已知BC=7,AD=5,求AF的长.
【题目】如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC.
(1)AD与BC相等吗?请说明理由;
(2)BE与DF平行吗?请说明理由.
【题目】如图,已知坐标系中点A(2,-1),B(7,-1),C(3,-3).
(1)判定△ABC的形状;
(2)设△ABC关于x轴的对称图形是△A1B1C1,若把△A1B1C1的各顶点的横坐标都加2.纵坐标不变,则△A1B1C1的位置发生什么变化?若最终位置是△A2B2C2,求C2点的坐标;
(3)试问在x轴上是否存在一点P,使PC-PB最大,若存在,求出PC-PB的最大值及P点坐标;若不存在,说明理由.
【题目】如图,已知∠AOB=a外有一点P,画点P关于直线OA的对称点P′,再作点P′关于直线OB的对称点P″.
(1)试猜想∠POP″与a的大小关系,并说出你的理由.
(2)当P为∠AOB 内一点或∠AOB边上一点时,上述结论是否成立?
【题目】如图所示,在△ABC中,AB=AC,∠A=60°,BD⊥AC于点D,DG∥AB,DG交BC于点G,点E在BC的延长线上,且CE=CD.
(1)求∠ABD和∠BDE的度数;
(2)写出图中的等腰三角形(写出3个即可).
【题目】已知二次函数y=x2﹣(2m+1)+( m2﹣1).(1)求证:不论m取什么实数,该二次函数图象与x轴总有两个交点;(2)若该二次函数图象经过点(2m﹣2,﹣2m﹣1),求该二次函数的表达式.
【题目】如图,在等腰△ABC中,∠A=80°,∠B和∠C的平分线相交于点O
(1)连接OA,求∠OAC的度数;
(2)求:∠BOC。
【题目】已知等腰三角形的周长为28cm,其中的一边长是另一边长的倍,求这个等腰三角形各边的长.
【题目】如图,已知等边△ABC的边长为a,B,C在x轴上,A在y轴上.
(1)作△ABC关于x轴的对称图形△A′B′C′;
(2)求△ABC各顶点坐标和△A′B′C′各顶点坐标.
【题目】问题情境:如图,在Rt△ABC中,∠ACB=90°∠BAC=30°.
动手操作:(1)若以直角边AC所在的直线为对称轴.将Rt△ABC作轴对称变换,请你在原图上作出它的对称图形:
观察发现:(2)Rt△ABC和它的对称图形组成了什么图形?你最准确的判断是 .
合作交流:(3)根据上面的图形,请你猜想直角边BC与斜边AB的数量关系,并证明你的猜想.